Số tự nhiên n thỏa mãn:
\(\left(2n+1\right):\left(n+2\right)\)
Số tự nhiên n thỏa mãn:
\(\left(3n+1\right):\left(2n+3\right)\)
Cho n là số tự nhiên khác 0
Số giá trị của x thỏa mãn \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
2
Tik cho mk nha..................cảm ơn rất nhiều
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Tìm các số tự nhiên \(n\) thỏa mãn mỗi bất phương trình sau :
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
\(\Leftrightarrow15-12n+27+2n>0\)
\(\Leftrightarrow42-10n>0\)
\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)
Vậy \(S=\left\{n|n< 4,2\right\}\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)
\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)
\(\Leftrightarrow4n+13\le40\)
\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)
Vậy \(S=\left\{n|n\le6,75\right\}\)
Số tự nhiên n thỏa mãn : 2^2.3^2n .\(\left(\frac{2}{3}\right)^n\) .2^n = 82944
số tự nhiên n thỏa mãn
\(2^n.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)
a) S hình thoi là:
(19 x 12) : 2 = 114(cm2)
b) S hình thoi là;
(30 x 7) : 2 = 105(cm2)
\(2^n.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)(n\(\in\)N)
\(2^n.2^n.\left(\frac{2}{3}\right)^n.\left(3^2\right)^n=82944\)
\(\left(2.2.\frac{2}{3}.9\right)^n=82944\)
\(24^n=82944\)
Tớ làm đến đây thôi khó lắm bạn xem lại đề đi
Tìm số tự nhiên n thỏa mãn :
\(a,5\left(2-3n+42+3n\right)\ge0\)
\(b, \left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le1,5\)
Cho số tự nhiên n thỏa mãn 6n-11 là bội của n-2. Tập hợp các giá trị n là
A.n∈\(\left\{1;3\right\}\)
B.n∈\(\left\{0;6\right\}\)
C.n∈\(\left\{0;3\right\}\)
D.n∈\(\left\{0;1\right\}\)
Tìm số tự nhiên n thỏa mãn \(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+......+\frac{1}{2n\left(2n+2\right)}=\frac{502}{2009}\)
xét \(VT=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2n.\left(2n+2\right)}\right)\) (1)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+.......+\frac{2}{2n\left(2n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.......+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}\)
mà theo bài ra (1) = \(\frac{502}{2009}\)
<=>\(\frac{1}{4}-\frac{1}{4n+4}=\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{4}-\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{8036}\)
<=> 4n+4=8036
<=> 4n=8032
<=> n=2008
=) \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}-\frac{1}{2n+2}=\frac{502}{2009}:\frac{1}{2}=\frac{1018}{2009}\)
=) \(\frac{1}{2n+2}=\frac{1}{2}-\frac{1018}{2009}=\frac{-27}{4018}\)
=) \(\frac{-1}{-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(\frac{-27}{27.-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(27.-\left(2n+2\right)=4018\)
=) \(-\left(2n+2\right)=4018:27=\frac{4018}{27}\)
=) \(2n+2=\frac{-4018}{27}\)
=) \(2n=\frac{-4018}{27}-2=\frac{-4072}{27}\)
=) \(n=\frac{-4072}{27}:2=\frac{-2036}{27}\)
\(\)
Ta có:
\(\frac{1}{2}.\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{2n\cdot\left(2n+2\right)}\right)=\frac{502}{2009}\)
\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2n+2}=\frac{\frac{502}{2009}}{\frac{1}{2}}=\frac{1004}{2009}\)
\(\frac{1}{2n+2}=\frac{1}{2}-\frac{1004}{2009}=\frac{1}{4018}\)
\(\Rightarrow2n+2=4018\)
\(\Rightarrow n=2013\)
Vậy n= 2013