\(\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}...\dfrac{100}{9.10}\)
\(\dfrac{2^2}{1.3}\)x\(\dfrac{3^2}{2.4}\)x\(\dfrac{4^2}{3.5}\)......\(\dfrac{99^2}{98.100}\)
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{99^2}{98.100}\)
\(=\dfrac{2.2.3.3.4.4.....99.99}{1.3.2.4.3.5.....98.100}\)
\(=\dfrac{2.3.4.....99}{1.2.3.4.....98}.\dfrac{2.3.4.....99}{3.4.5.....100}\)
\(=\dfrac{99}{98}\cdot\dfrac{2}{100}\)
\(=\dfrac{99}{4900}\)
\(\dfrac{2}{1.3}.\dfrac{3}{2.4}.\dfrac{4}{3.5}...\dfrac{25}{24.26}.\dfrac{26}{25.72}\)
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
Help me, các chế ơi
\(\dfrac{4}{3}\times\dfrac{9}{8}\times\dfrac{16}{15}\times\dfrac{25}{24}=\dfrac{5}{3}\)
`(2^2)/(1 . 3) . (3^2)/(2 . 4) . (4^2)/(3 . 5) . (5^2)/(4 . 6)`
`= 4/3 . 9/8 . 16/15 . 25/24 = 5/3`
\(\dfrac{2^2}{1.3}.\dfrac{3^3}{2.4}.\dfrac{4^4}{3.5}...\dfrac{50^2}{49.54}\)
với lại lũy thừa tất cả phải là mũ 2
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{50^2}{49.51}\\ =\dfrac{\left(2.3.4.....50\right).\left(2.3.4....50\right)}{\left(1.2.3....49\right).\left(3.4.5.....51\right)}\\ =\dfrac{50.2}{51.1}\\ =1\dfrac{49}{51}\\ =\dfrac{100}{51}\)
Tính
a) A=3/4 . 8/9 .15/16 . ... . 2499/2500
b) B= \(\dfrac{2^2}{1.3}\) . \(\dfrac{3^2}{2.4}\) . \(\dfrac{4^2}{3.5}\). ... . \(\dfrac{50^2}{49.51}\)
tim x ϵ N* biết \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left[1+\dfrac{1}{x\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)
\(\Rightarrow32x+32=31x+62\)
\(\Rightarrow x=30\)
Vậy x=30
Chúc bn học tốt
ĐKXĐ: \(x\notin\left\{0;-2\right\}\)
Ta có: \(\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{1+2\cdot4}{2\cdot4}+\dfrac{1+3\cdot5}{3\cdot5}\cdot...\cdot\dfrac{1+x\left(x+2\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2\cdot2}{1\cdot3}+\dfrac{3\cdot3}{2\cdot4}+\dfrac{4\cdot4}{3\cdot5}+...+\dfrac{\left(x+1\right)\left(x+1\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot2\cdot3\cdot...\cdot\left(x+1\right)}{1\cdot2\cdot3\cdot...\cdot x}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot\left(x+1\right)}{3\cdot4\cdot5\cdot...\cdot\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\left(x+1\right)\cdot\dfrac{2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{32x+32}{16\left(x+2\right)}=\dfrac{31\left(x+2\right)}{16\left(x+2\right)}\)
Suy ra: \(32x+32=31x+62\)
\(\Leftrightarrow x=30\)(thỏa ĐK)
Vậy: S={30}
Tính :
(1 + \(\dfrac{1}{1.3}\) ) . ( 1+\(\dfrac{1}{2.4}\) ) . (1+\(\dfrac{1}{3.5}\)) . ... . ( 1+\(\dfrac{1}{2019.2021}\))
Lời giải:
Gọi tích trên là $A$
Xét thừa số tổng quát: $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$
Thay $n=1,2,3....,2019$ ta có:
$A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2020^2}{2019.2021}$
$=\frac{2^2.3^2...2020^2}{(1.3)(2.4)(3.5)...(2019.2021)}$
$=\frac{(2.3....2020)(2.3...2020)}{(1.2.3...2019)(3.4...2021)}$
$=2020.\frac{2}{2021}=\frac{4040}{2021}$
Tính:A=\(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{2016.2018}{2017^2}\)
Tính: \(B=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{98.100}{99^2}\)
Ta có:B = \(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}......\dfrac{98.100}{99^2}\)
\(=\dfrac{1.2.3......98}{2.3.4......99}.\dfrac{3.4.5.....100}{2.3.4.....99}=\dfrac{1}{99}.\dfrac{100}{2}=\dfrac{100}{198}\)
Vậy B = \(\dfrac{100}{198}\)