Hệ số của hạng tử bậc 3 của đa thức \(\left(x-3x\right)^3\)
Cho đa thức
\(M\left(x\right)=-2x^5+5x^2+7x^4-9x+8+2x^5-7x^4-4x^2+6\)
\(N\left(x\right)=7x+x-5x+2x-7x+5x+3\)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b) Tìm hệ số cao nhất , hệ số tự do và bậc của đa thức M(x) , N(x)
c) Tính M(x)+N(x) , M(x)- N(x)
d) Chứng tỏ x=2 là nghiệm của đa thức M ( x) nhưng k là nghiệm của đa thức N (x) . Tìm nghiệm còn lại của M(x)
i) Tìm GTNN của N(x)
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
Cho đa thức: \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
1. Thu gọn, rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến \(x\)
2. Xác định, bậc của đa thức, hệ số tự do, hệ số cao nhất
3. Tính \(f\left(-1\right),f\left(0\right),f\left(1\right),f\left(-a\right)\)
1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)
Sắp xếp theo lũy thừa giảm dần của biến x:
\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)
2. Bậc của đa thức: 4
Hệ số tự do: 1
Hệ số cao nhất: 7
3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)
\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)
\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)
\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)
\(\)
Hệ số hạng tử bậc hai của tích (\(\left(\dfrac{1}{5}x-3\right)\left(3x^2-5x+2\right)\)
Hệ số hạng tử bậc hai của tích \(\left(\frac{1}{5}x-3\right)\left(3x^2-5x+2\right)\)
Bài 1. Cho đa thức: P(x)=2+〖5x〗^2-3x^3+4x^2-2x-x^3+6x^5.
a)Thu gọn và sắp xếp các hạng tử của đa thức P(x) theo lũy thừa giảm của biến.
b)Xác định bậc của đa thức P(x).
c)Xác định hệ số lớn nhất, hệ số tự do của đa thức P(x).
Tính giá trị của đa thức P(x) tại x=-1.
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
Cho 2 đa thức f(x)=3x^2+x+x^4-x^3-x^2+2x và g(x)=x^4+2x^2+x^3 a.sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm dần b.tìm hệ số tự do, hệ số cao nhất của hai đa thức C.tìm bậc của hai đa thức D.tìnhh(x)=f(x)+g(x) và k(x)-g(x)-f(x) E.tínhh(-2) vàk(-3) rồi so sánh hai hết quả vừa tìm được
a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)
\(g\left(x\right)=x^4+x^3+2x^2\)
b: Hệ số tự do của f(x) là 0 và g(x) là 0
Hệ số cao nhất của f(x) là 1
Hệ số cao nhất của g(x) là 1
c: Bậc của f(x) là 4
Bậc của g(x) là 4
Cho đa thức:\(f\left(x\right)=4x^2-7x^2+4x-5x^4-x^2+6x^3+5x^4-5\)
a)Thu gọn rồi sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến .
b)Xác định bậc của đa thức ,hệ số tự do ,hệ số cao nhất.
c)Tính f(-1);f(0);f(0,5);f(1)
CTR : Nếu đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0x^0\) có tổng các hệ số của hạng tử bậc chãn bằng tổng các hệ số của nó
Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất của đa thức:
\(f\left(x\right)=-x-7x^2+6x^3-3x^4-2x^2-6x+2x^4-1\)
\(f\left(x\right)=-x-7x^2+6x^3-3x^4-2x^2-6x+2x^4-1\)
\(f\left(x\right)=-x^4+6x^3-9x^2-7x-1\)
\(\Rightarrow\) Bậc của đa thức là \(4\), hệ số tự do là \(-1\), hệ số cao nhất của đa thức là \(-1\).
Thu gọn rồi tìm động não chút đi bn
\(f\left(x\right)=ax^3+4x\left(x^2-x\right)-4x+8=ax^3+4x^3-4x^2-4x+8=\left(a+4\right)x^3-4x^2-4x+8\)\(g\left(x\right)=x^3-4x\left(bx+1\right)+c-3=x^3-4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\) thì \(a+4=1,4b=4,c-3=8\) được \(a=-3,b=1,c=11\)
Vậy \(a=-3,b=1,c=11\)