Những câu hỏi liên quan
LG
Xem chi tiết
H24
Xem chi tiết
NS
19 tháng 3 2016 lúc 20:28

Ta có :

Tử số = \(\frac{2006}{2}+...+\frac{2006}{2007}\)

= 2006.(\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\))

MS= \(\frac{2006}{1}+\frac{2005}{2}+...+\frac{1}{2006}\)

= 2006+\(\frac{2007-2}{2}+\frac{2007-3}{3}+...+\frac{2007-2006}{2006}\)

=200+.(\(\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}\)) - ( 1+1+1+...+1 )(2006c/s1) 

= 2006 . (\(\frac{2007}{2}+...+\frac{2007}{2006}\))-2006

=\(\frac{2007}{2}+...+\frac{2007}{2006}\)

=2007.(\(\frac{1}{2}+...+\frac{1}{2006}\))

Khi đó : 

C= .... bạn tự đáp số 

và cuối cùng C = \(\frac{2006}{2007}\)

 

Bình luận (0)
LC
Xem chi tiết
NT
12 tháng 5 2021 lúc 19:11

Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)

\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)

\(=\dfrac{2006}{2007}\)

Bình luận (2)
NK
Xem chi tiết
NT
21 tháng 6 2022 lúc 20:31

\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)

\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)

Bình luận (0)
H24
Xem chi tiết
HN
Xem chi tiết
H24
23 tháng 7 2019 lúc 16:01

a) \(A=\frac{2006^3+1}{2006^2-2005}=\frac{\left(2006+1\right)\left(2006^2-2006+1\right)}{2006^2-2005}=\frac{2007\left(2006^2-2005\right)}{2006^2-2005}=2007\)

Nhìn thì ta nhận biết được tử số có chứa hđt thì mình nghĩ nếu bạn chịu suy nghĩ sẽ ra thôi. Câu b cũng cx dùng hđt thôi 

b) \(\frac{2006^3-1}{2006^2+2007}=\frac{\left(2006-1\right)\left(2006^2+2006+1\right)}{2006^2+2007}\)

\(=\frac{2005\left(2006^2+2007\right)}{2006^2+2007}=2005\)

Hok tốt nha !

Bình luận (0)
NY
Xem chi tiết
TH
2 tháng 4 2017 lúc 9:23

Đặt biểu thức là A ta có:

 \(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)

\(\Rightarrow A=\frac{2006}{2007}\)

Bình luận (0)
TV
Xem chi tiết
PV
Xem chi tiết
AR
29 tháng 12 2022 lúc 17:37

a)A = B

b)A>B

Bình luận (6)