Cho A = x2+xy+y2--3x-3y+3002. Tìm x,y để A min.
1 like cho bạn nào trả lời nhanh nhất.
Cho các số thực x, y thoả mãn 2 x + y - 1 ( 3 x + y + 1 ) = 3 x + 3 y + 1 . Giá trị nhỏ nhất của biểu thức P = x 2 + x y + y 2 bằng
A. 3 4
B. 0
C. 1 4
D. 1 2
Cho các số thực x, y thoả mãn 2 x + y - 1 ( 3 x + y + 1 ) = 3 x + 3 y + 1 . Giá trị nhỏ nhất của biểu thức P= x 2 + x y + y 2 bằng
A. 3 4
B. 0.
C. 1 4
D. 1 2
1) Giai he pt:
a) x2 = 3x - y va y2 = 3y - x b) x + y + xy = 5 va x2 + y2 =5
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
cho P= x(5x+15y). (3x-2y) -5(y^2-2)
a, rút gọn P
b, tìm xy để P=0 và P=10
bạn nào làm được nhanh nhất thì mình cho 3 like nhé
chị làm được bài trên chưa ạ nếu làm được rồi thì giúp em với ạ
Thu gọn biểu thức
a, A= x (x2-x+1)+1/2x2(2-2x)
b, B= 3x (x-2)-x (1+3x)
c, C = x (x2+xy+y2)-y (x2+xy+y2)
d, D=3x (x2-2x-3)-x2(3x-2)+5(x2-x)
GIÚP MK VỚI MK LIKE NHA haha
a) A = x2 - xy + x - y
b) A = x2 - x + xy - 3y
c) A = 3x - 3y + x2 - y2
d) A = x2 - y2 - 2x - 2y
a) \(A=x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
c) \(A=3x-3y+x^2-y^2=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(3+x+y\right)\)
d) \(A=x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
a) A = a) A = x2 - xy + x - y= (x2 - xy) + (x - y)=x(x-y)+(x-y)=(x+1)(x-y)
c) A = 3x - 3y + x2 - y2=3(x-y)+(x-y)(x+y)=(3+x+y)(x-y)
d) A = x2 - y2 - 2x - 2y = (x-y)(x+y)-2(x+y)=(x+y)(x-y-2)
câu b bạn xem lại đúng đề ko
\(\)a, \(A=x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
Tìm 2 số nguyên x,y biết :xy-x+2y=3
Bạn nào trả lời nhanh nhất mik tick cho (có cả lời giải nhé)
Ta có : đề bài
=>x(y-1) + 2y = 3
=>x(y-1) + 2y - 2 = 1
=>x(y-1) + 2(y-1) = 1
=> (x+2)(y-1) = 1
=>x+2=1 ; y-1=1
=>x=-1 ; y=2 (TM x;y thuộc Z)
Vậy x=-1; y=2
Chúc bạn học tốt
Cảm ơn bạn nhé
Cho 2 số thực dương a và b thỏa mãn
a, sin (2 - 2ab) - sin (a + b) = 2a + a+ b - 2
Tìm Min của S = a + 2b
b, cos (x + y + 1) + 3 = cos(3xy) + 9xy - 3x - 3y
Tìm Min của S = xy + 2x
bài 7:tìm các số nguyên x và y sao cho
a) (x-1) . (y + 1) =5
b) x.(y+2) = -8
c) xy - 2x - 2y =0
bạn nào giúp mình với . Bạn nào giải nhanh , đúng mình cho 1 like :)) :3
mỉnh cần gấp lắm ai trả lởi cũng có 1 like :((