Những câu hỏi liên quan
EC
Xem chi tiết
DH
9 tháng 10 2017 lúc 20:33

\(A=a^3-6a^2-7a+12\)

\(=\left(a^3-a\right)-6a^2-6a+12\)

\(=a\left(a^2-1\right)-6\left(a^2+a-2\right)\)

\(=\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\)

Ta thấy \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(a-1\right)a\left(a+1\right)⋮2;3\)

\(ƯCLN\left(2;3\right)=1\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)(1)

Lại có \(6\left(a^2+a-2\right)⋮6\forall a\in Z\)(2)

Từ (1);(2) \(\Rightarrow\left[\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\right]⋮6\forall a\in Z\)

Hay \(A⋮6\forall a\in Z\)(đpcm)

Bình luận (0)
CN
Xem chi tiết
NT
2 tháng 7 2023 lúc 20:34

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

Bình luận (0)
H24
Xem chi tiết
CH
Xem chi tiết
TC
27 tháng 8 2017 lúc 16:31

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Bình luận (0)
KT
Xem chi tiết
DT
27 tháng 7 2016 lúc 20:06

a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.

\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6

Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))

b) \(ab.\left(a^2-b^2\right)\)

Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6

Nếu  a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...) 

\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...)  - 1 (2;3;4;5...) = 0

thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.

Bình luận (0)
TH
Xem chi tiết
NT
24 tháng 5 2022 lúc 20:53

a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)

\(=a^3b-ab+ab-ab^3\)

\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)

Vì \(a^3-a⋮6\)

và \(b-b^3=-\left(b^3-b\right)⋮6\)

nên \(ab\left(a^2-b^2\right)⋮6\)

Bình luận (0)
LN
Xem chi tiết
ND
Xem chi tiết
NQ
7 tháng 1 2021 lúc 22:35

ta có 

\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)

do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6

mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6

vậy A chia hết cho 6

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TK
18 tháng 3 2018 lúc 21:08

Nếu a + b chia hết cho 6 => a chia hết cho 6 và b chia hết cho 6

=> a^3 hay aaa chia hết cho 6

b^3 hay bbb chia hết cho 6

=> a^3 + b^3 chia hết cho 6.

Bình luận (5)