Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LN
Xem chi tiết
HH
Xem chi tiết
LF
18 tháng 7 2017 lúc 18:58

a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì

\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)

\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))

Hay pt vô nghiệm

Bình luận (5)
NT
18 tháng 7 2017 lúc 19:14

phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v

Bình luận (0)
H24
18 tháng 7 2017 lúc 19:36

e có 1 cách ngoài liên hợp cho câu b, rất đơn giản( nhưng dễ nhầm ) , đó là lập phương liên tiếp :v =))

Bình luận (2)
TA
Xem chi tiết
LP
Xem chi tiết
H24
3 tháng 10 2018 lúc 21:04

a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)

\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)

\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)

Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)

Ta có:

\(\Rightarrow t^2+3t-10=0\)

\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)

thay \(t=2\) vào (1), ta có :

\(\sqrt{x^2+3x}=2\)

\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)

\(\Rightarrow x_1=1;x_2=-4\)

vậy phương trình có 3 nghiệm x1 = 1, x2 = -4

b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)

\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)

\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)

Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)

ta có :...............

mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à

Bình luận (2)
MT
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
ML
31 tháng 10 2015 lúc 20:07

c) (d tương tự)

\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)

và \(a+2b=5\)

--> Thế

\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)

Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)

Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.

y = 0 thì x = 1 (không thỏa pt ban đầu)

Xét y khác 0. Chia cả 2 vế của (*) cho y6

\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)

Không khả quan lắm :)) bạn tự tìm cách khác nhé.

Bình luận (0)
LG
Xem chi tiết
AH
14 tháng 7 2020 lúc 16:07

Bài 1:

ĐK: $x\in\mathbb{R}$

Đặt $\sqrt{2x^2-4x+3}=a(a\geq 0)$

$\Rightarrow 2x^2-4x+3=a^2\Leftrightarrow 2(x^2-2x+3)-3=a^2$

$\Leftrightarrow x^2-2x+3=\frac{a^2+3}{2}$

PT trở thành: $\frac{a^2+3}{2}=2a$

$\Leftrightarrow a^2-4a+3=0$

$\Leftrightarrow (a-1)(a-3)=0\Leftrightarrow a=1$ hoặc $a=3$

Nếu $a=1\Rightarrow a^2-1=0\Leftrightarrow 2x^2-4x+3-1=0$

$\Leftrightarrow x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1$ (thỏa mãn)

Nếu $a=3\Rightarrow a^2-9=0\Leftrightarrow 2x^2-4x+3-9=0$

$\Leftrightarrow x^2-2x-3=0\Leftrightarrow x=3$ hoặc $x=-1$

Vậy.........

Bình luận (0)
AH
14 tháng 7 2020 lúc 16:20

Bài 2: Bạn xem lại đề.

Bài 3:

ĐKXĐ: $x\geq 1$ hoặc $x\leq 0$

PT $\Leftrightarrow (x^4-2x^3+x^2)-(x^2-x)-\sqrt{2(x^2-x)}=0$

$\Leftrightarrow (x^2-x)^2-(x^2-x)-\sqrt{2(x^2-x)}=0$

Đặt $\sqrt{2(x^2-x)}=a(a\geq 0)$ thì pt trở thành:

$(\frac{a^2}{2})^2-\frac{a^2}{2}-a=0$

$\Leftrightarrow a^4-2a^2-4a=0$

$\Leftrightarrow a(a^3-2a-4)=0$

$\Leftrightarrow a(a-2)(a^2+2a+2)=0$

Dễ thấy $a^2+2a+2>0$ nên $a(a-2)=0\Rightarrow a=0$ hoặc $a=2$

Nếu $a=0\Leftrightarrow \sqrt{2(x^2-x)}=0$

$\Leftrightarrow x^2-x=x(x-1)=0\Rightarrow x=0$ hoặc $x=1$ (thỏa mãn)

Nếu $a=2\Leftrightarrow \sqrt{2(x^2-x)}=2$

$\Rightarrow x^2-x=2\Leftrightarrow x^2-x-2=0\Rightarrow x=2$ hoặc $x=-1$ (thỏa mãn)

Vậy..

Bình luận (0)
AH
14 tháng 7 2020 lúc 16:25

Bài 4: ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow x^2+2=2\sqrt{(x+1)(x^2-x+1)}$

Đặt $\sqrt{x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$ thì pt trở thành:

$a^2+b^2=2ab$

$\Leftrightarrow (a-b)^2=0\Leftrightarrow a-b=0$

$\Rightarrow a^2-b^2=0$

$\Leftrightarrow x+1-(x^2-x+1)=0$

$\Leftrightarrow 2x-x^2=0\Leftrightarrow x(2-x)=0$

$\Rightarrow x=0$ hoặc $x=2$ (đều thỏa mãn)

Vậy..........

Bình luận (0)