cho x, y, z khác 0 và x+y+z=0. chứng minh rằng (x²+y²+z²)*3/(x*3+y*3+z*3)² >= 4
cho x, y, z khác 0 và x+y+z=0. chứng minh rằng (x²+y²+z²)*3/(x*3+y*3+z*3)² >=4
Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)
\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)
=> đpcm
chứng minh rằng nếu x/y=y/z=z/t thì (x+y+x/y+z+t)^3=x/y với y,z,t khác 0 và y+z+t khác 0
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
cho \(^{y^2}\)=x.z,\(z^2\)=y.t.Với x,y,z,t khác 0,y+z khác 0, \(y^3\)+\(z^3\) khác \(t^3\).Chứng minh \(x^3\)+\(y^3\)-2\(z^3\)/\(y^3\)+\(z^3\)-2\(t^3\)=(\(\dfrac{\text{x+y-2z}}{x+z-2t}\))
Cho 3 số a, b, c khác 0 và : a(y + z) = b(x + z) =c(z + y) Chứng minh rằng : y - z /a(b - c) = z - x / b(c - a) = x - y / c(a - b)
cho 3 số thực xyz khác 0 thoả mãn (x+y+z)^2=x^2+y^2+z^2 chứng minh rằng 1/x+1/y+1/z=0
(x+y+z)^2=x^2+y^2+z^2
=>2(xy+yz+xz)=0
=>xy+xz+yz=0
=>xy/xyz+xz/xyz+yz/xyz=0
=>1/x+1/y+1/z=0
Giúp mik bài này vs: chứng minh rằng nếu x/y=y/z=z/t thì (x+y+z/y+z+t)^3=x/t vs y,z,t khác 0; y+z+t khác 0( mik đang cần gấp)
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1