Những câu hỏi liên quan
NL
Xem chi tiết
NH
24 tháng 8 2024 lúc 20:45

+ Lời giải 1. Từ3 2

b 3b 5b 11 0− + + = ta được( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 2 3 2 2

3 2 2 2

2 2 2 2

b 3b 5b 11 0 b 6b 12b 8 3 b 4b 4 5 b 2 17 0

b 2 3 b 2 5 b 2 17 0 2 b 3 b 2 5 2 b 17 0

2 b 3 b 2 5 2 b 17 0 2 b 3 b 2 5 2 b 17 0

− + + =  − + − + − + + − + =

 − + − + − + =  − − + − − − + =

  − − − − + − − =  − − − + − − =  

Từ đó kết hợp với3 2

a 3a 5a 17 0− + − = ta suy ra được( ) ( ) ( )

2 23 2

a 3a 5a 17 2 b 3 b 2 5 2 b 17 0− + − = − − − + − − =

Do vậy ta cóa 2 b= − haya b 2+ =

+ Lời giải 2. Xéta 2 b= − thay vào vế trái của3 2

a 3a 5a 17 0− + − = , ta có( ) ( ) ( )

( )

3 23 2

2 3 2

3 2 3 2

a 3a 5a 17 2 b 3 2 b 5 2 b 17

8 12b 6b b 12 12b 3b 10 5b 17

b 3b 5b 11 b 3b 5b 11 0

− + − = − − − + − −

= − + − − + − + − −

= − + − − = − − + + =

Điều này dẫn đếna 2 b= − thỏa mãn3 2

a 3a 5a 17 0− + − = . Từ đó suy raa b 2+ = .•

Lời giải 3. Ta có( ) ( )

33 2 3 2

a 3a 5a 17 a 3a 3a 1 2a 16 a 1 2 a 1 14− + − = − + − + − = − + − − .

Đặtx a 1= − , khi đó kết hợp với giả thiết ta được3

x 2x 14 0+ − =

Ta cũng có( ) ( )

33 2 3 2

b 3b 5b 11 b 3b 3b 1 2b 12 b 1 2 b 1 14− + + = − + − + + = − + − +

Đặty b 1= − , khi đó kết hợp với giả thiết ta được3

y 2y 14 0+ + = . Kết hợp hai kết

quả ta được( ) ( )( )3 3 3 3 2 2

x 2x 14 y 2y 14 0 x y 2 x y 0 x y x xy y 2 0+ − + + + =  + + + =  + − + + =

Dễ thấy22 2 2

2 2 2 y 3y y 3y

x xy y 2 x xy 2 x 2 0

4 4 2 4

 

− + + = − + + + = + + +  

  .

Do đó ta đượcx y 0+ = haya 1 b 1 0− + − = nêna b 2+ = .•

Lời giải 4. Cộng theo vế các hệ thức đã cho ta được

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
AA
Xem chi tiết
TT
Xem chi tiết
LQ
Xem chi tiết
NL
11 tháng 2 2020 lúc 9:04

\(a^3-3a^2+3a-1+2a-16=0\Leftrightarrow\left(a-1\right)^3+2a-16=0\)

Tương tự: \(\left(b-1\right)^3+2b+12=0\)

Cộng vế với vế:

\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)

\(\Leftrightarrow\left(a+b-2\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-1\right)+\left(b-1\right)^2+2\right]=0\)

\(\Leftrightarrow a+b-2=0\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
H24
Xem chi tiết