Những câu hỏi liên quan
NH
Xem chi tiết
BN
Xem chi tiết
TP
29 tháng 12 2022 lúc 21:14

bạn hình như viết sai đề

 

Bình luận (0)
PT
Xem chi tiết
TD
21 tháng 12 2022 lúc 22:34

2400

 

Bình luận (0)
CC
Xem chi tiết
NH
25 tháng 8 2023 lúc 16:20

A = 32 + 33 + 34 +...+ 3101

A = 32.(1 + 3 + 32 + 33 +...+ 399)

A =32[(1+ 3+32+33) + (34+ 35+36+37)+...+ (396 + 397+ 398 + 399)

A = 32.[ 40 + 34.(1+ 3 + 32 + 33)+...+ 396.(1 + 3 + 32 + 33)

A = 32.[ 40 + 34. 40 + ...+ 396.40]

A = 32.40.[ 1 + 34+...+396

A = 3.120.[1 + 34 +...+ 396]

120 ⋮ 120 ⇒ A =  3.120.[ 1 + 34 +...+396] ⋮ 120 (đpcm)

Bình luận (0)
PT
Xem chi tiết
AH
5 tháng 2 2024 lúc 18:04

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

Bình luận (0)
AH
5 tháng 2 2024 lúc 18:05

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

Bình luận (0)
AH
5 tháng 2 2024 lúc 18:06

Bài 2:

a. $7\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$

$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$

b.

$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$

Bình luận (0)
VR
Xem chi tiết
XO
12 tháng 10 2019 lúc 22:00

Ta có : \(3A=3+3^2+3^3+...+3^{102}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2A=3^{102}-1\)

\(A=\frac{3^{102}-1}{2}\)

Ta có : 3102 - 1 = 3100 + 2 - 1

                   = 325.4 + 2 - 1

                   = 325.4 . 32 - 1

                   = ....1 . 9 - 1

                   = ...9 - 1

                   = ...8

=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)

Vậy chữ số tận cùng của A là 4

Bình luận (0)
PD
12 tháng 10 2019 lúc 22:01

Nhân A thêm 3

Lấy 3A - A được 3^102 -1

A = (3^102-1)/2

3^4k có tận cùng là 1

nên A có tận cùng là 0

Bình luận (0)
PD
12 tháng 10 2019 lúc 22:01

Bee swam à kb đi

Tên tui là Acerchicken

Bình luận (0)
H24
Xem chi tiết
SP
Xem chi tiết
ZL
Xem chi tiết
IM
2 tháng 9 2016 lúc 8:21

a)

Vì 3 là số nguyên tố

=> Các ước của m là 

\(1;3;3^2;3^3;....;3^{34}\)

Tổng các ước của m là 

\(S=1+3+3^2+....+3^{34}\)

\(\Rightarrow3S=3+3^2+3^3+....+3^{35}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+....+3^{35}\right)-\left(1+3+3^2+....+3^{34}\right)\)

\(\Rightarrow2S=3^{35}-1\)

\(\Rightarrow S=\frac{3^{35}-1}{2}\)

Bình luận (1)
IM
2 tháng 9 2016 lúc 8:28

Ta có

\(S=\frac{3^{35}-2}{2}\)

\(\Rightarrow\frac{3^{35}-1}{2}=1+3+3^2+......+3^{35}\)

\(\Rightarrow\frac{3^{35}-1}{2}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.......+3^{33}\left(1+3+3^2\right)\)

\(\Rightarrow\frac{3^{35}-1}{2}=13+3^3.13+....+3^{33}.13\)

\(\Rightarrow3^{35}-1=2\left(13+13.3^3+.....+13.3^{33}\right)\)

\(\Rightarrow3^{35}-1=2.13\left(1+3^3+.....+3^{33}\right)\)

=> 335 - 1 chia hết cho 13

Vậy số dư của phép chia 335 - 1 là 0

Bình luận (1)
IM
2 tháng 9 2016 lúc 8:29

câu b dễ hơn

==

tick đê

Bình luận (0)
VN
Xem chi tiết
NT
24 tháng 12 2021 lúc 20:30

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

Bình luận (0)