CMR:
S=31+32+......+31997+31998 chia hết cho 26
S=3+32+3...+31998. chứng minh S chia hết cho 26
a Cho S = 31+ 32+ 33+ ... + 31997+ 31998
Chứng minh rằng S ⋮26
b Có hai số tự nhiên nào mà hiệu của chúng bằng 98 và tích bằng 1998 hay không ?
b: Gọi số bị trừ là x
Số trừ là x-98
Theo đề, ta có: \(x\left(x-98\right)=1998\)
\(\Leftrightarrow x^2-98x-1998=0\)
mà x nguyên
nên \(x\notin\varnothing\)
Cho S=31.32.33...31998
Chứng minh S⋮26
Lời giải:
$S=3^1.3^2.3^3....3^{1998}=3^{1+2+3+...+1998}=3^{1997001}$
Ta thấy các ước của $S$ có dạng $3^m$ với $0\leq m\leq 1997001$ với $m$ là số tự nhiên.
Do đó $S\not\vdots 26$
Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
cho a/b = 1/5+1/6 +1/7 +1/8 +.....+1/26 CMR a chia hết cho 31
cho S=32+33+...+32023 CMR tổng S chia hết cho 156
a)S=3+31+32+33+34+......+320
chứng minh chia hết cho 20
Cho số a có 31 chữ số 1, số b có 32 chữ số 1. CMR: ab-2 chia hết cho 3
Vì số a có 31 chữ số 1 nên tổng các chữ số của số a là: 31.1=31 chia 3 dư 1
Vì số b có 32 chữ số 1 nên tổng các chữ số của số b là: 32.1=32 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3=>a chia 3 dư 1; b chia 3 dư 2.
=>ab chia 3 dư 2
=>ab-2 chia hết cho 3 (đpcm)
Cho S = 2 + 22 + ... + 2100 . CMR: S chia hết cho 31