Rút gọn phân thức M=\(\frac{(a^2+b^2+c^2)(a+b+c)+(ab+bc+ca)^2}{(a+b+c)^2-(ab+bc+ca)}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CHo phân thức \(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
a) Tìm các giá trị của a,b,c phân thức có nghĩa.
b) Rút gọn phân thức M
Cho phân thức \(A=\frac{x^5+2x^4+2x^3-4x^2+3x+6}{x^2+2x-8}\)
a) Tìm tập xác định của A
b) Tìm các giá trị của x để A = 0
c) Rút gọn A
a, Đk để phân thức M có nghĩa là mẫu khác 0
Xét: \(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=0\)
\(\Leftrightarrow a+b=b+c=a+c=0\)
\(\Leftrightarrow a=b=c\)
Vậy để M có nghĩa thì \(a^2+b^2+c^2\ne0\)
b, Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
Đặt: \(\hept{\begin{cases}a^2+b^2+c^2=x\\ab+bc+ca=y\end{cases}}\)
Khi đó ta được: \(\left(a+b+c\right)^2=x+2y\)
Ta có: \(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(=a^2+b^2+c^2+ab+bc+ac\left(Đkxđ:a^2+b^2+c^2\ne0\right)\)
Cho phân thức M=(a2+b2+c2)(a+b+c)2+(ab+bc+ca)2 / (a+b+c)2-(ab+bc+ca)
a,Tìm các giá trị của a,b,c để phân thức được xác định(tức để mẫu ≠0)
b,Rút gọn M
Rút gọn phân thức:
(a^2+b^2+c^2)(a+b+c)+(ab+ac+bc)/(a+b+c)^2-(ab+bc+ca)
Sửa đề:
\(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+2ab+2bc+2ca-\left(ab+bc+ca\right)}\)
\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+ab+bc+ca}\)
\(=a+b+c\left(a^2+b^2+c^2+ab+bc+ca\ne0\right)\)
(a^2+b^2+c^2)(a+b+c)+(ab+ac+bc)^2/(a+b+c)^2-(ab+bc+ca) có đúng đề ko ạ
Cho phân thức
\(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
a) Tìm các giá trị của a,b,c để phân thức được xác định (tức để mẫu khác 0)
b)Rút gọn phân thức M.
Các bạn giúp mk với!
a)Ta có :
(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0
<=>2a2+2b2+2c2+2ab+2bc+2ca=0
<=>(a+b)2+(b+c)2+(c+a)2=0
<=>a+b =b+c =c+a =0
<=>a=b=c=0
Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.
b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y
Ta có:
\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
= a2+b2+c2+ab+bc+ca.
=a2+b2+c2+ab+bc+ca
Gt thêm nhe
a)\(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(ab+bc+ac\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ac\right)}\)
Biểu thức có nghĩa\(\Leftrightarrow\left(a+b+c\right)^2-\left(ab+bc+ac\right)\ne0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-ab-bc-ac\ne0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ac\ne0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ac\ne0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\ne0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\ne0\)
Mà \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=0\Leftrightarrow a=b=c=0\)
nên M có nghĩa\(\Leftrightarrow a,b,c\)không đồng thời bằng 0
Rút gọn phân thức sau:
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
----------------------------------------------------------
(a+b+c)^2 - (ab+bc+ca)
a. tìm đkxđ của a,b,c để phân thức A có nghĩa
b. Rút gọn A
p/s: mk đang cần rất rất gấp, giúp mk nha. tks
Cho phân thức sau:
\(\dfrac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
a. Tìm giá trị a,b,c để phân thức có nghĩa
b. Thu gọn phân thức
Phân thức có nghĩa khi a;b;c không đồng thời bằng 0
Khi đó:
\(\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=\dfrac{\left(a^2+b^2+c^2+ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(=a^2+b^2+c^2+ab+bc+ca\)
rút gọn các phân thức sau :
a) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
b) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
a, Gợi ý nà :3
a^2 + b^2 - c^2 +2ab = (a^2 + b^2 + 2ab) -c^2 = (a+b)^2 - c^2 = (a + b - c)(a + b + c)
a^2 - b^2 + c^2 + 2ac = (a + c)^2 - b^2 = (a + b + c)(a - b + c)
b. Gợi ý tiếp luôn nà :3
a^3 + b^3 + c^3 - 3abc
= (a^3 + b^3 +3a^2 x b + 3ab^2) - 3ab(a+b) -3abc + c^3
= (a+b)^3 + c^3 - 3ab(a+b+c)
= (a + b+ c)[(a+b)^2 - c(a+b) +c^2] - 3ab(a+b+c)
=(a+b+c)(a^2 + b^2 + c^2 -ac -bc + 2ab -3ab)
=(a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)
Rồi cứ thế rút gọn...
Học tốt nha bạn :3
\(\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b+c\right)}=\frac{a+b-c}{a-b+c}\)
\(\text{nhận xét: ta có hằng đẳng thức:}\)
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
đó đến đây bạn làm tiếp
b/\((\sum a^3)-3abc=(\sum a).(\sum a^2-\sum ab)\)\(\Rightarrow\)\(\frac{(\sum a^3)-3abc}{(\sum a^2-\sum ab)}=\frac {(\sum a).(\sum a^2-\sum ab)}{(\sum a^2-\sum ab)}=a+b+c\)
rút gọn biểu thức sau : (a+b+c)(a^2+b^2+c^2-ab-bc-ca)
đây là một hằng đẳng thức nha bạn
=a3+b3+c3-3abc