Những câu hỏi liên quan
NA
Xem chi tiết
NT
15 tháng 6 2023 lúc 23:31

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm

Bình luận (0)
NN
Xem chi tiết
NT
5 tháng 10 2022 lúc 15:45

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 13:52

Xét tam giác ABD và tam giác ACD có :

AB = AC ( giả thiết )

BD = CD ( giả thiết )

AD cạnh chung

\( \Rightarrow \Delta ABD =\Delta ACD (c-c-c)\)

\( \Rightarrow \)\(\widehat {BAD} = \widehat {CAD}\)( 2 góc tương ứng )

Xét tam giác ABM và ta giác ACM có :

AB = AC ( giả thiết )

AM cạnh chung

\(\widehat {BAD} = \widehat {CAD}\)( chứng minh trên )

\(\Delta ABM=\Delta ACM (c-g-c)\)

\(\Rightarrow MC = MB\) ( 2 cạnh tương ứng )

\( \Rightarrow \) M là trung điểm BC

Bình luận (0)
TP
Xem chi tiết
LO
Xem chi tiết
EC
28 tháng 6 2020 lúc 21:47

A B C D H E K I F

a) Xét t/giác HBA và t/giác ABC

có: \(\widehat{B}\):chung

 \(\widehat{BHA}=\widehat{A}=90^0\)(gt)

=> t/giác HBA đồng dạng t/giác ABC (g.g)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 (định lí Pi - ta - go)

=> AC2 = BC2 - AB2 = 102 - 62 = 64

=> AC = 8 (cm)

Ta có: t/giác HBA đồng dạng t/giác ABC

=> HB/AB = AH/AC = AB/BC

hay HB/6 = AH/8 = 6/10 = 3/5

=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)

c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)

=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)

Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)

 \(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)

=> \(\widehat{AHK}=\widehat{C}\) (2)

Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)

Xét t/giác AKI và t/giác ABC

có: \(\widehat{A}=90^0\): chung

 \(\widehat{AIK}=\widehat{C}\)(cmt)

=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC 

d) Do AD là đường p/giác của t/giác ABC =>  \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)

<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)

=> BD = 10 - 40/7 = 30/7 (cm)

DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)

DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)

Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
DT
14 tháng 7 2015 lúc 21:38

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

Bình luận (0)
SH
28 tháng 12 2015 lúc 21:37

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

Bình luận (0)
NQ
24 tháng 5 2016 lúc 9:59

dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ

Bình luận (0)
VN
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
VN
Xem chi tiết