Những câu hỏi liên quan
LQ
Xem chi tiết
HT
14 tháng 5 2016 lúc 13:34

Ta có : \(f'\left(x\right)=\left(3^x\ln3\right)\left(x-\sqrt{x^2+1}\right)+3^x\left(1-\frac{x}{\sqrt{x^2+1}}\right)=3^x\left(x-\sqrt{x^2+1}\right)\left(\ln3-\frac{1}{\sqrt{x^2+1}}\right)\)

Mà : \(\begin{cases}\sqrt{x^2+1}>\sqrt{x^2}=\left|x\right|\ge x\Rightarrow x-\sqrt{x^2+1}< 0\\\ln3>1>\frac{1}{\sqrt{x^2+1}}\Rightarrow\ln3-\frac{1}{\sqrt{x^2+1}}>0\end{cases}\)

\(\Rightarrow f'\left(x\right)< 0\) với mọi x thuộc R

Vậy hàm số \(y=f\left(x\right)=3^x\left(x-\sqrt{x^2+1}\right)\) nghịch biến trên R

Bình luận (0)
LD
Xem chi tiết
H24
26 tháng 8 2021 lúc 19:10

Gọi x1, x2 là hai giá trị của x (x1>x2)

Ta có: x1>x2\(\Leftrightarrow\)-2x1<-2x \(\Leftrightarrow\)f(x1) < f(x2)

Vì x1>xmà f(x1) < f(x2) suy ra hàm số nghịch biến trên tập hợp số thực R

 

 

Bình luận (0)
NT
27 tháng 8 2021 lúc 0:37

Vì a=-2

nên hàm số y=-2x nghịch biến trên R

Bình luận (0)
LT
Xem chi tiết
NT
Xem chi tiết
LH
10 tháng 10 2021 lúc 8:01

a) Đk:\(x\in R\)

TH1:Xét \(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)

Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)

\(\Rightarrow I>0\)

Hàm đồng biến trên \(\left(3;+\infty\right)\)

TH2:Xét \(x\in\left(-10;1\right)\)

Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)

Xét \(I=2\left(x_1+x_2\right)-4\)

Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)

Hàm nb trên khoảng \(\left(-10;1\right)\)

b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)

c)Đk: \(x\in R\backslash\left\{2\right\}\)

=>Hàm số xác định trên \(\left(-\infty;2\right)\)

Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)

Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Hàm nb trên ​\(\left(-\infty;2\right)\)

d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)

Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)

e)TXĐ:D=R

Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)

​​\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)

Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)

\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)

Hàm đb trên \(\left(0;+\infty\right)\)

Bình luận (0)
KL
Xem chi tiết
PC
14 tháng 6 2021 lúc 17:04

f(x1)=3x1f(x1)=3x1

f(x2)=3x2f(x2)=3x2

Theo giả thiết, ta có:

x1<x2⇔3.x1<3.x2x1<x2⇔3.x1<3.x2 ( vì 3>03>0 nên chiều bất đẳng thức không đổi)

⇔f(x1)<f(x2)⇔f(x1)<f(x2) (vì f(x1)=3x1;f(x1)=3x1;f(x2)=3x2)f(x2)=3x2)

Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên RR. 

Chú ý:

Ta cũng có thể làm như sau:

Vì x1<x2x1<x2 nên x1−x2<0x1−x2<0

Từ đó: f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0 

Hay f(x1)<f(x2)f(x1)<f(x2) 

Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên R


 

Bình luận (0)
 Khách vãng lai đã xóa
TP
14 tháng 6 2021 lúc 21:38

Do \(x_1< x_2\Rightarrow3x_1< 3x_2\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Hàm số \(f\)đồng biến trên \(ℝ\)khi :

\(\forall x_1,x_2\inℝ\)\(x_1< x_2\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

=> Hàm số đã cho đồng biến trên \(ℝ\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
24 tháng 9 2021 lúc 20:30

Cho x các giá trị bất kì x1, x2 sao cho x1 < x2

=> x1 - x2 < 0

Ta có: f(x1) = 3x1 ; f( x2) = 3x2

=> f(x1) - f(x2) = 3x1 - 3x2 = 3(x1 - x2) < 0

=> f(x1) < f(x2)

Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.

 
Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TY
Xem chi tiết
PT
19 tháng 10 2021 lúc 18:44

LỚP 4 KO BIẾT

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 10 2021 lúc 18:49

Đồng biến vì \(3m^2-m+3\)luôn dương

Lý do: \(3m^2-m+3\)có \(b^2-4ac=1-4.9=-35< 0\)

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
NH
31 tháng 5 2017 lúc 10:16

Hàm số bậc nhất

Bình luận (0)
NT
Xem chi tiết
SN
11 tháng 11 2023 lúc 1:09

48 D

50 loading...  

loading...    

Bình luận (2)