cho x,y,z dương thỏa mãn 5x2+2xyz+4y2+3z2=60
tìm min B= x+y+z
Cho x,y,z là các số dương thỏa mãn :
\(5x^2+2xyz+4y^2+3z^2=60\)
Tìm min của x+y+z
tìm x, y, z nguyên dương thỏa mãn:
2xyz=x+y+z+16
cho x,y,z >0 thỏa mãn 5x^2+2xyz+4y^2+3z^2=60
tìm GTLN B= x+y+z
Cho x,y,z là các số thực dương thỏa: xy + yz + zx = 2xyz
Tìm MIn của \(P=\frac{x}{z\left(z+x\right)}+\frac{y}{x\left(x+y\right)}+\frac{z}{y\left(y+z\right)}\)
Em thử, sai thì thôi nha, chỗ đặt xong rồi thay vào P em ko biết mình có tính đúng hay sai nữa!
giả thiết \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\).
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì a + b + c = 2; a, b, c > 0 và:
\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra khi a = b = c = 2/3 hay \(x=y=z=\frac{3}{2}\)
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Cho x,y,z dương thỏa mãn xy +yz+zx+2xyz =1 .Chứng minh :1/x+1/y+1/z >= 4*(x+y+z)
AM-GM p3 :)
Cho các số thực dương x,y,z thỏa mãn 2x + 4y + 7z = 2xyz
Tìm GTNN của biểu thức P = x + y + z
Cho các số x,y,z dương thỏa mãn:
x2 +y2 +z2 = 1. Tìm GTNN của M= 1/16x2 +1/4y2 + 1/z2
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
cho các số dương x y z thỏa mãn x+y+z=2
Tìm min P = \(\dfrac{x^2}{y+z}\)+\(\dfrac{y^2}{z+x}\)+\(\dfrac{z^2}{x+y}\)
Thầy Lâm giúp với em với ạ
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{x^2}{y+z}+\frac{y+z}{4}\geq 2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x$
$\frac{y^2}{x+z}+\frac{x+z}{4}\geq y$
$\frac{z^2}{x+y}+\frac{x+y}{4}\geq z$
Cộng theo vế các BĐT trên và thu gọn ta được:
$P\geq \frac{x+y+z}{2}=\frac{2}{2}=1$
Vậy $P_{\min}=1$ khi $x=y=z=\frac{2}{3}$