Bài 1 Cho x+y=2.Chứng minh rằng xy\(\le\)1
Cho x+y=2. Chứng minh rằng: xy \(\le\) 1
Áp dụng BĐT cosi: \(x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow2\ge2\sqrt{xy}\\ \Leftrightarrow\sqrt{xy}\le1\\ \Leftrightarrow xy\le1\)
Dấu \("="\Leftrightarrow x=y=1\)
Cho x ≥ 1; y ≥ 1. Chứng minh rằng \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\)
Áp dụng BĐT cosi:
`(y-1)+1>=2\sqrt{y-1}`
`=>\sqrt{y-1}<=y/2`
`=>x\sqrt{y-1}<=(xy)/2`
Hoàn toàn tương tự:
`\sqrt{x-1}<=x/2`
`=>y\sqrt{x-1}<=(xy)/2`
`=>x\sqrt{y-1}+y\sqrt{x-1}<=xy`
Dấu "=" xảy ra khi `x=y=2`
Cho x + y = 2 . chứng minh rằng xy \(\le\)1?
x+y = 2 => y = 2- x
=> x.y = x.(2 - x) = - x2 + 2x
Xét x.y - 1 = - x2 + 2x - 1 = (-x2 + x) + (x - 1) = - x.(x - 1) + (x - 1) = (x - 1).(-x + 1) = -(x-1).(x-1) = -(x-1)2 \(\le\) 0 với mọi x
=> xy - 1 \(\le\) 0 <=> x.y \(\le\) 1
cho x + y = 2 . chứng minh rằng xy \(\le\) 1
đặt x=1 + m ; y = 1-m thì x+y=2
ta có xy=(1+m)(1-m) = 1 - \(m^2\)< hoặc = 1( vì m^2 > hoặc = 0)(dấu = <=> x=y=1)
Vì x + y = 2 --> x =2 - y
Ta có : xy = (2 - y) y
= 2y - y2
= -y2 + 2y -1 + 1
= -(y - 1)2 + 1
Vì (y - 1)2 > hoặc = 0 --> -(y - 1)2 < hoặc = 0(với mọi y)
--> -(y - 1)2 + 1 < hoặc = 1 (với mọi y)
Vậy xy < hoặc = 1
(x+y)2=x2+y2+2xy . Do x2+y2-2xy=(x-y)> hoặc = 0. => x2+ y2> hoặc =2xy. =>4=4xy => xy< hoặc =1 . Dấu "=" sẩy ra <=>x=y=1
Cho 3 số dương 0\(\le x\le y\le z\le\)1. Chứng minh rằng:
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)
Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!
Cho x + y = 2. Chứng minh rằng xy \(\le\) 1
Đặt x = 1 + m ; y = 1 - m thì x + y = 1 + m + 1 - m = 2
Ta có xy = (1 + m) . (1 - m) = 1 . (1 - m) + m . (1 - m) = 1 - m + m - m2 = 1 - m2 \(\le\) 1 (vì m2 \(\ge\) 0).
Vậy suy ra điều phải chứng minh (dấu = xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\) x = y = 1)
X + y = 1 => ít nhất có1 số dương.
TH1 : 1 dương , 1 âm => xy < 0 < 1
TH2 : x > 0, y > 0
Ta có : x + y >= 2 nhân căn của (x.y)
Suy ra 2 >= 2 nhân căn của ( x.y )
Suy ra 1 >= căn của ( x.y ).
Vây x.y =< 1
cho x,y >0 và x+y\(\le\)1
chứng minh rằng A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\ge7\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)
\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)
\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)
Dấu "=" khi \(x=y=\frac{1}{2}\)
chứng minh rằng với mọi x, y >0: \(\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)
Do \(x,y>0\) BĐT tương đương:
\(\dfrac{x^2+2y^2+3}{2}\ge xy+y+1\)
\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh xong
Vì x,y>0 nên các mẫu thức dương.
BĐT<=>\(2\left(xy+y+1\right)\le x^2+2y^2+3\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\left(1\right)\)
(1) đúng với mọi x,y>0 nên BĐT đã cho được chứng minh.
Dấu "=" xảy ra khi và chỉ khi x=y=1.
:| ; =)) ; :))
Đề : Cho 3 số thức dương thỏa mãn
\(xy+yz+zx=1\)
Chứng minh rằng : \(\frac{1}{1+xy+z^2}+\frac{1}{1+yz+x^2}+\frac{1}{1+zx+y^2}\le\frac{9}{5}\)
Lời giải:
Để cho đẹp, đổi \((xy,yz,xz)\mapsto (a,b,c)\) suy ra \(a+b+c=1\)
BĐT cần chứng minh tương đương với :
\(A=\frac{1}{a+b+c+a+\frac{bc}{a}}+\frac{1}{a+b+c+b+\frac{ac}{b}}+\frac{1}{a+b+c+c+\frac{ab}{c}}\leq \frac{9}{5}\)
\(\Leftrightarrow A=\frac{a}{2a^2+ab+bc+ac}+\frac{b}{2b^2+ab+bc+ac}+\frac{c}{2c^2+ab+bc+ac}\leq \frac{9}{5}\)
\(\Leftrightarrow A=\sum \frac{a(ab+bc+ca)}{2a^2+ab+bc+ac}\leq \frac{9(ab+bc+ac)}{5}\)
Để ý rằng \(A=\sum \left ( a-\frac{2a^3}{2a^2+ab+bc+ac} \right )=1-\sum \frac{2a^3}{2a^2+ab+bc+ac}\)
Cauchy-Schwarz:
\(\sum \frac{2a^3}{2a^2+ab+bc+ac}=\sum \frac{2a^4}{2a^3+a^2b+abc+a^2c}\geq \frac{2(a^2+b^2+c^2)^2}{2(a^3+b^3+c^3)+ab(a+b)+bc(b+c)+ca(a+c)+3abc}\)
Giờ đặt \(ab+bc+ac=q,abc=r\)
Phân tích:
\(2(a^3+b^3+c^3)+\sum ab(a+b)+3abc=2(a^3+b^3+c^3-3abc)+(a+b+c)(ab+bc+ac)+6abc\)
\(=2(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+ab+bc+ac+6abc\)
\(=2(a^2+b^2+c^2)-(ab+bc+ac)+6abc=2-5q+6r\)
Do đó \(A\leq 1-\frac{2(1-2q)^2}{2-5q+6r}\). Giờ chỉ cần chỉ ra \(1-\frac{2(1-2q)^2}{2-5q+6r}\leq \frac{9q}{5}\Leftrightarrow q(3-5q)+6r(9q-5)\geq 0\)
Theo AM-GM dễ thấy
\(q^2=(ab+bc+ac)^2\geq 3abc(a+b+c)=3r\)
Và \(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow q\leq \frac{1}{3}\)
\(\Rightarrow 9q-5<0\rightarrow 6r(9q-5)\geq 2q^2(9q-5)\) (đổi dấu)
\(\Rightarrow q(3-5q)+6r(9q-5)\geq q(3-5q)+2q^2(9q-5)=q(2q-1)(3q-1)\geq 0\)
BĐT trên hiển nhiên đúng vì \(q\leq \frac{1}{3}<\frac{1}{2}\Rightarrow (2q-1)(3q-1)\geq 0\)
Chứng minh hoàn tất.
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
P/s: Làm BĐT bần cùng lắm mới xài pqr, không ngờ phải xài thật :)
Sao tag éo dc :|
Akai HarumaNguyễn Huy ThắngTrần Việt LinhHoàng Lê Bảo Ngọc