Những câu hỏi liên quan
MT
Xem chi tiết
DA
15 tháng 11 2017 lúc 21:20

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

Bình luận (0)
TN
17 tháng 11 2017 lúc 8:19

Đáp số : 3

Bình luận (0)
NA
19 tháng 11 2020 lúc 20:24

a) Nếu P = 2 thì P + 10 = 2 + 10= 12 > 3 và chia hết cho 3 suy ra P + 10 là HS ( loại )

    Nếu P = 3 thì+) + 10 = 3 + 10 = 13 > 3 và ko chia hết cho 3 suy ra P + 10 là SNT( chọn)

                         +) + 20 = 3 + 20 = 23 > 3 và chia hết cho 3 suy ra P + 20 là SNT ( chọn )

    Nếu P là SNT > 3 suy ra P có dạng 3k+1, 3k+2

    +) Khi P = 3k + 1 thì P + 20 = 3k + 1 + 20 = 3k + 21 = 3.(k + 7) > 3 và chia hết cho 3 suy ra P + 20 là HS ( loại )

    +) Khi P = 3k + 2 thì P + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) > 3 và chia hết cho 3 suy ra P + 10 là Hs ( loại )

                            Vậy P = 3

 Đề bài câu b phải là P + 2 và P - 2 nhé!

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
VA
14 tháng 8 2017 lúc 16:13

+,p=2=>p+10=12 là hợp số(KTM)

+,p=3=>p+10=13 (số nguyên tố)=>p+20=23(số nguyên tố)

+, p>3=>p=3k+1 hoặc 3k+2

            +,p=3k+1=>p+20=3k+1+20=3k+21 chia hết cho 3

                           =>p+20 có ít nhất 3 ước là: 1;3;p+20

                           =>p+20 là hợp số(KTM)

           +,p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3

                          =>p+10 có ít nhất ba ước là: 1;3;p+10

                          =>p+10 là hợp số.

            Vậy p=3 thỏa mãn.

       Chúc bạn thành công trong học tập

Bình luận (1)
NL
Xem chi tiết
H24
11 tháng 12 2018 lúc 13:37

Xet p=2;p=5;p=3

Sau do xet p>5

Bình luận (0)
HT
Xem chi tiết
TN
2 tháng 11 2016 lúc 12:05

mình mới lớp 5 chưa trả lời được

Bình luận (0)
HT
2 tháng 11 2016 lúc 12:12

ai giúp mình đc k

Bình luận (0)
LH
Xem chi tiết
VH
Xem chi tiết
H24
8 tháng 3 2019 lúc 21:08

bài toán có cách giải như sau. Chứng minh mọi số chính phương chia 8 dư 0 hoặc 1. Mà 8q-1 chia 8 dư 7 nên vô lí nên ko có p,q thỏa mãn.

Bình luận (0)
KM
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết