Ôn tập cuối năm phần số học

DD

tìm phân số p sao cho:p+10 và p+20 cũng là các số nguyên tố

TM
23 tháng 5 2017 lúc 17:31

Với \(p=2\Rightarrow p+10=2+10=12\) ( không là số nguyên tố )

=> loại

Với \(p=3\Rightarrow p+10=3+10=13\)

\(\Rightarrow p+20=20+3=23\) ( đều là các số nguyên tố )

=> chọn

Nếu p chia cho 3 dư 1 \(\Rightarrow p=3k+1\left(k\in N\right)\)

\(\Rightarrow p+20=3k+1+20\)

\(=3k+21=3\left(k+7\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\) )

\(\Rightarrow3\left(k+7\right)\) là hợp số ; hay p + 20 là hợp số

=> loại

Nếu p chia cho 3 dư 2 \(\Rightarrow p=3k+2\left(k\in N\right)\)

\(\Rightarrow p+10=3k+2+10\)

\(=3k+12=3\left(k+4\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\) )

\(\Rightarrow3\left(k+4\right)\) là hợp số ; hay p + 10 là hợp số

=> loại

Vậy p = 3 thỏa mãn đề bài

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TP
Xem chi tiết
SK
Xem chi tiết
TP
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
DY
Xem chi tiết
H24
Xem chi tiết