Giá trị của tích \(2.a.b^2\) với \(a=4;b=-6\) là số nào trong bốn đáp số A, B, C, D dưới đây :
(A) \(\left(-288\right)\) (B) \(288\) (C) \(144\) (D) \(\left(-144\right)\)
Giá trị của biểu thức (a+b)^2 với a-b=4 và a.b=27😂
(a+b)2= a2+2ab+b2
=a2-2ab+b2+4ab(thêm bớt 2ab)
=(a-b)2+4ab
thay a-b=4 và ab=27 ta được
42+4*27=124
Cho biểu thức: A=( x+2/ 2-x - 2-x/x+2 - 4x²/x²-4) : ( 2/ 2-x + x+3/2x-x²)
a) Tìm điều kiện xác định của biểu thức A.
b) Chứng minh rằng A= 4x²/ 3x+3
c) Tính giá trị của A khi x= 1/2
d) Với giá trị nào của x thì A=-1.
e) Tìm giá trị của x để A
Bạn nên viết biểu thức A bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu biểu thức của bạn hơn.
Cho biểu thức: A=\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A khi x = -2 và x = 4.
c) Tìm x biết A = 3.
d) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
Cho biểu thức: \(A=\dfrac{x}{x-2}+\dfrac{2-x}{x+2}+\dfrac{12-10x}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
a, Rút gọn A.
b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.
\(a,A=\dfrac{x\left(x+2\right)+\left(2-x\right)\left(x-2\right)+12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2x-4-x^2+2x+12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{4}{x+2}\)
Vậy \(A=-\dfrac{4}{\left(x+2\right)}\)
cho a:b=2:5 ; b:c=4:3 và a.b-c.c=-10,4. Gía trị của giá trị tyệt đối của a+b+c
chung minh giá trị tuyệt đối của một tích bằng tích các giá trị tuyệt đối. tq: |a.b| = |a|.|b
Bài1. Cho biểu thức và với
a) Rút gọn A;
b) Với P = A.B, tìm x để
c) Tìm x để B < 1
d) Tìm số nguyên x để P = A.B là số nguyên.
Bài 2. Cho biểu thức
a) Rút gọn P;
b) Tìm các giá trị của x để
c) Tìm các giá trị nguyên của x để A > 1
Bài 3. Cho biểu thức
a) Tìm điều kiện xác định của P;
b) Rút gọn biểu thức P.
c) Tìm các giá trị của x để
d) Tìm các giá trị của x để P > 0; P < 0.
Cho a = -7, b = 4. Tính giá trị của các biểu thức sau: a2 + 2.a.b + b2 và (a + b).(a + b)
Với a = -7 và b = 4. Ta có:
a2+2.a.b + b2 = (-7)2+ 2.(-7).4 + 42 = 49 – 56 + 16 = 9
(a + b). (a + b) = [(-7) + 4].[(-7) + 4] = (-3).(-3) = 9
Bài 2 ( 2 điểm ) Cho đơn thức: A=(- xy3) xy và B=(2xy3)? (xy)
a) Thu gọn đơn thức A và B
b) Tính tích A B
c) Tính giá trị của đơn thức A.B tại x=2.y- -1.
cho biểu thức: A=\(\dfrac{x^2+x-2}{x},B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}\)
a)tính giá trị biểu thức với A=3
b)rút gọn biểu thức B
c)tìm giá trị của x để biểu thức P=A.B đạt giá trị nhỏ nhất
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)