Những câu hỏi liên quan
H24
Xem chi tiết
LH
13 tháng 8 2021 lúc 19:15

A.

Bình luận (1)
PN
13 tháng 8 2021 lúc 19:16

A. Trọng tâm tam giác

Bình luận (1)
TL
13 tháng 8 2021 lúc 19:20

đáp án: A

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 5 2017 lúc 6:34

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC:

(x + 5)2 + (y – 1)2 = 85

Bình luận (0)
LT
Xem chi tiết
H24

B

Bình luận (0)
NT
21 tháng 8 2021 lúc 20:43

Chọn B

Bình luận (0)
H24
21 tháng 8 2021 lúc 20:45

B

Bình luận (0)
CB
Xem chi tiết
CB
10 tháng 5 2022 lúc 19:54

Giúp với 

Bình luận (0)
NT
10 tháng 5 2022 lúc 19:55

Câu 1: B

Câu 2: C

Câu 3: C

Câu 4: A

Câu 5: D

Câu 6: B

Câu 7: C

Câu 8: D

Bình luận (1)
TT
10 tháng 5 2022 lúc 20:01

Câu 1: Xét các khẳng định sau, tìm khẳng định đúng.

Trong một tam giác giao điểm của ba trung tuyến gọi là:

A. Trọng tâm tam giác

Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là:

A. 8cm 

Câu 3: Cho tam giác ABC, M là trung điểm của AC, G là trọng tâm của tam giác ABC và GM = 5cm. Độ dài đoạn BG là:

D. 15cm

Câu 4: Cho tam giác ABC có AB = AC = 13cm, BC = 10cm. Độ dài đường trung tuyến AM là:

A. 12cm 

Câu 5: Trong một tam giác, điểm cách đều ba cạnh là:

C. Giao điểm ba đường phân giác 

Câu 6: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là:

C. Tam giác cân 

Câu 7: Cho tam giác ABC, M là trung điểm của BC, G là trọng tâm của tam giác ABC và AM=18cm. Độ dài đoạn AG là:

B. 6cm 

Bình luận (1)
LV
Xem chi tiết
ND
19 tháng 6 2019 lúc 20:50

A B C O I A' B' C' E F D G S

a) Ta có ^AIC' = ^IAC + ^ICA = ^IAB + ^ICB = ^IAB + ^BAC' = ^IAC' => \(\Delta\)AC'I cân tại C'

=> C' nằm trên trung trực của AI. Tương tự B' cũng nằm trên trung trực của AI => B'C' vuông góc AI

Hay A'I vuông góc với B'C'. Lập luận tương tự B'I vuông góc A'C', C'I vuông góc A'B'

Do đó I là trực tâm của \(\Delta\)A'B'C' (đpcm).

b) Ta thấy ^FDE = ^A'DC' = ^A'AC' = ^IAC' = C'IA (Vì \(\Delta\)AC'I cân tại C') = ^EIC'

Suy ra tứ giác DEIF nội tiếp (đpcm).

c) Gọi S là tâm ngoại tiếp của \(\Delta\)DEF. Vì tứ giác DEIF nội tiếp (cmt) nên S đồng thời là tâm ngoại tiếp DEIF

Gọi giao điểm thứ hai giữa (S) và (O) là G. Khi đó ^DFG = ^DEG => ^GFA' = ^GEC'

Lại có ^EGF = ^EDF = ^A'DC' = ^A'GC' => ^FGA' = ^EGC'. Do vậy \(\Delta\)GEC' ~ \(\Delta\)GFA' (g.g)

=> \(\frac{GC'}{GA'}=\frac{EC'}{FA'}\). Mặt khác ^A'IF = ^C'IA = ^C'AI = ^C'AE và ^IA'F = ^AA'D = ^AC'D = ^AC'E

Cho nên \(\Delta\)AEC' ~ \(\Delta\)IFA' (g.g) => \(\frac{EC'}{FA'}=\frac{AC'}{IA'}\). Mà các điểm A,I,A',C' đều cố định

Nên tỉ số \(\frac{AC'}{FA'}\) là bất biến. Như vậy \(\frac{GC'}{GA'}\)không đổi, khi đó tỉ số giữa (GC' và (GA' của (O) không đổi

Kết hợp với (O), A',C' cố định suy ra G là điểm cố định. Theo đó trung trực của IG cố định

Mà S thuộc trung trực của IG (do D,I,E,F,G cùng thuộc (S)) nên S di động trên trung trực của IG cố định (đpcm).

Bình luận (0)
NY
Xem chi tiết
NT
5 tháng 7 2021 lúc 13:54

a) Xét tứ giác OCDB có 

\(\widehat{OBD}+\widehat{OBC}=180^0\)

Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)
QA
Xem chi tiết
NT
30 tháng 6 2023 lúc 19:29

Chọn C

Bình luận (0)
QA
Xem chi tiết
NL
17 tháng 4 2022 lúc 14:47

Do \(SO\perp ABC\Rightarrow\) các tam giác SOA, SOB, SOC đều vuông tại O

Đặt \(SA=SB=SC=a\) , áp dụng Pitago:

\(OA=\sqrt{SA^2-SO^2}=\sqrt{a^2-SO^2}\)

\(OB=\sqrt{SB^2-SO^2}=\sqrt{a^2-SO^2}\)

\(OC=\sqrt{SC^2-SO^2}=\sqrt{a^2-SO^2}\)

\(\Rightarrow OA=OB=OC\Rightarrow O\) là tâm đường tròn ngoại tiếp tam giác ABC

Bình luận (0)
CB
Xem chi tiết
NT
15 tháng 6 2023 lúc 16:49

1A

2A

3C

4A

5C

6C

7A

10D

Bình luận (0)
NK
Xem chi tiết
NT
5 tháng 9 2023 lúc 13:45

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD vuông góc AB

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC vuông góc CD

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔHDA có

I,O lần lượt là trung điểm của DH,DA

=>IO là đường trung bình

=>IO//AH và IO=AH/2

=>AH=2IO

Bình luận (1)