Tìm các số tự nhiên \(x\) sao cho :
a) \(6⋮\left(x-1\right)\)
b) \(14⋮\left(2.x+3\right)\)
Tìm số tự nhiên x sao cho:
\(14⋮\left(2.x+3\right)\)
\(6⋮\left(x-1\right)\)
Cho biểu thức A = \(\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\left(x-\dfrac{6}{x-1}\right)\)
a, Rút gọn biểu thức A.
b, Tìm x để A<0
c, Tìm các số tự nhiên x thoả mãn \(A^2-\left|A\right|=6\)
a) Ta có: \(A=\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\cdot\left(x-\dfrac{6}{x-1}\right)\)
\(=\left(\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}-\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}+\dfrac{5-x}{\left(x-3\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-1\right)-6}{x-1}\)
\(=\dfrac{2x-6-x-2+5-x}{\left(x+2\right)\left(x-3\right)}\cdot\dfrac{x^2-x-6}{x-1}\)
\(=\dfrac{-3}{x-1}\)
Mn giúp em với:
1. Tìm các số tự nhiên x ; y biết \(\left(x+5\right)\cdot\left(2y+1\right)=42\)
2. Tìm số tự nhiên x biết: \(\left(x+20\right)⋮10;\left(x-15\right)⋮5;\left(x+18\right)⋮9;x⋮8;x< 500\)
3. Tìm 2 số tự nhiên a ; b biết \(a-b=6\)và \(BCNN\left(a;b\right)=180\)
Mn giải đầy đủ giúp em ạ
1 .x+5 và 2y+1 là Ư(42) lập bảng tính
2.vd tc chia hết
Tìm số tự nhiên x; y sao cho:
a) \(x-3=y\cdot\left(x+2\right)\) b)\(x+6=y\cdot\left(x-1\right)\)
Tìm số tự nhiên x, biết:
a) \(\left( {9x - {2^3}} \right):5 = 2\)
b) \(\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\)
a)
\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)
Vậy \(x = 2\)
b)
\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)
Vậy \(x = 3\)
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Một số dạng toán khó cho học sinh lớp 6 :
Câu 1 : Tính bằng cách hợp lí :
a/ \(\left(14^{19}-14^{18}\right):\left(14^5.14^{12}\right)\)
b/ \(\left(2^{41}+3^8\right).\left(10^7-2^7\right).\left(2^4-4^2\right)\)
Câu 2 :
a/ Tích các số tự nhiên từ 6 đến 30 tận cùng bằng chữ số gì ?
b/ Tích các số tự nhiên từ 7 đến 22 tận cùng bằng mấy chữ số 0 ?
Câu 3 :
a/ Cho \(a,b\in N\). Chứng tỏ rằng \(ab\left(a+b\right)⋮2\)
b/ Tìm \(x,y\in N\) , biết rằng \(:xy\left(x+y\right)=20112009\)
Câu 4 :
a/ Từ 1 đến 1000 có bao nhiêu số chia hết cho 2 ? Bao nhiêu số chia hết cho 5 ?
b/ Từ 50 đến 2009 có bao nhiêu số chia hết cho 2 ? Bao nhiêu số chia hết cho 5 ?
Câu 5
Cho \(M=1+3+3^2+3^3+...+3^{100}\)
Tìm số dư khi chia M cho 13, chia M cho 40.
Câu 6 : Tìm các số tự nhiên x sao cho :
a/ \(x⋮21\) và \(40< x\le80\)
b/ \(x\inƯ\left(30\right)\) và \(x>8\)
c/ \(x\in B\left(30\right)\)và \(40< x< 100\)
d/ \(x\inƯ\left(50\right)\) và \(x\in B\left(25\right)\)
1. Tìm 2 số tự nhiên x, y sao cho \(\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}\) là số nguyên tố.
2. Cho a, b, c là các số thực dương. Chứng minh \(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 2/
\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)
Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)
Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.
PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.
Thỏa theo nguyện vọng mình làm luôn câu 1 cho b luôn :)
Câu 1/
\(A=\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}\)
Điều kiện: \(y^2-xy+1\ne0\)
Với x, y cùng chẵn, lẻ và x lẻ y chẵn thì tử là số chẵn, mẫu là số lẻ nên A sẽ là số chẵn.
Với x chẵn y lẻ thì tử là số lẻ mẫu là số chẵn nên A không phải là số nguyên.
Từ đây ta có được nếu A là số nguyên tố thì A chỉ có thể là 2.
\(A=\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}=2\)
\(\Leftrightarrow2y^2-xy+y-x^2-x+2=0\)
\(\Leftrightarrow\left(x-y\right)\left(2y+x+1\right)=2\)
\(\Rightarrow\left(x-y,2y+x+1\right)=\left(1,2;2,1\right)\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).