CM: \(a^2+b^2+1\ge ab+a+b\)
cm với a≥b≥1 : \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)
\(\frac{1+a^2-1-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+b^2-1-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{\left(ab-1\right)\left(b-a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\left(1\right)\)
\(a\ge b\ge1=>ab\ge0\left(2\right)\)
(1)(2)=>đề bài
cm với \(a\ge b\ge1:\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)
\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)
\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)
cho 2 số a và b thỏa mãn a≥1, b≥1. CM: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)≥\(\frac{2}{1+ab}\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
b1 cm
\(a^2+b^2+1\ge ab+a+b\) \(\forall a;b\)
b2 cm bđt
\(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c-1\right)\)
cm \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y;\forall x,y>0\)
bài 1)
ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
=> \(a^2+b^2+1\ge ab+a+b\)
ý 1 mk làm òi còn 2 ý kia chưa làm thui
bài 3 nhé
ta có với x,y >0 ÁP dụng bđt cô si ta có
\(x^3+x^3+y^3\ge3x^2y;y^3+y^3+x^3\ge3y^2x\)
cộng tưngf vế và rút gọn thì ta có \(x^3+y^3\ge x^2y+xy^2=xy\left(x+y\right)\)
\(\Rightarrow\frac{x^3+y^3}{xy}\ge x+y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)
CM: \(a^2+b^2+1\ge ab+a+b\)
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\left(true!!\right)\)
Dấu "=" xảy ra tại a=b=1
Xét hiệu \(A=\left(a^2+b^2+1\right)-\left(ab+a+b\right)\)
\(=a^2+b^2+1-ab-a-b\)
\(\Rightarrow2A=2a^2+2b^2+2-2ab-2a-2b\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow2A\ge0\Leftrightarrow A\ge0\)
Vậy \(a^2+b^2+1\ge ab+a+b\left(đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}}\Leftrightarrow a=b=1\)
Xét hiệu: \(VT-VP=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=1\)
CM BĐT: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) với \(ab\ge1\)
CM: 3(1 - a + a2)(1 - b + b2) \(\ge\)2(1 - ab + a2b2)
CM: 3(1 - a + a2)(1 - b + b2)(2 - c + c2) \(\ge\)1 + abc + a2b2c2
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
cho a,b\(\ge\)1
cm: \(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{2}{1+ab}\)
Sủa đề : Cho \(a;b\ge1\) , cmr : \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Biến đổi tương đương ta có :
\(bdt\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab-2a^2b^2-2a^2-2b^2-2\ge0\)
\(\Leftrightarrow-a^2-b^2+a^3b+ab^3+2ab-2a^2b^2\ge0\)
\(\Leftrightarrow\left(-a^2-b^2+2ab\right)+\left(a^3b+ab^3-2a^2b^2\right)\ge0\)
\(\Leftrightarrow-\left(a-b\right)^2+ab\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\)(luôn đúng \(\forall a;b\ge1\))
Vậy bđt đã được chứng minh