Cho a,b,c,d,e inR . Chứng minh các BĐT sau:
a/ a2 + b2 + c2 ge ab + bc + ca
b/ a2 + b2 +1 ge ab + a + b
c/ a2 + b2 +c2 + 3 ge 2( a + b + c)
d/ a2 + b2 + c2 ge 2( ab + bc - ca)
e/ a4 + b4 + c2 +1 ge 2a( ab2 - a +c +1)
f/ dfrac{a^2}{4}+ b2 + c2 ge ab - ac +2bc
g/ a2 (1+b2) + b2 (1+c2) +c2 (1+a2) ge 6abc
h/ a2 +b2+ c2+ d2+ e2 ge a(b+c+d+e)
i/ dfrac{1}{a}+ dfrac{1}{b}+dfrac{1}{c} ge dfrac{1}{sqrt{ab}}+dfrac{1}{sqrt{bc}}+dfrac{1}{sqrt{ca}} , (a,b,c 0)
j/ a+b+c ge sqrt{ab}+sqrt{bc}+sqrt{ca...
Đọc tiếp
Cho a,b,c,d,e \(\in\)\(R\) . Chứng minh các BĐT sau:
a/ a2 + b2 + c2 \(\ge\) ab + bc + ca
b/ a2 + b2 +1 \(\ge\) ab + a + b
c/ a2 + b2 +c2 + 3 \(\ge\) 2( a + b + c)
d/ a2 + b2 + c2 \(\ge\) 2( ab + bc - ca)
e/ a4 + b4 + c2 +1 \(\ge\) 2a( ab2 - a +c +1)
f/ \(\dfrac{a^2}{4}\)+ b2 + c2 \(\ge\) ab - ac +2bc
g/ a2 (1+b2) + b2 (1+c2) +c2 (1+a2) \(\ge\) 6abc
h/ a2 +b2+ c2+ d2+ e2 \(\ge\) a(b+c+d+e)
i/ \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\)+\(\dfrac{1}{c}\) \(\ge\) \(\dfrac{1}{\sqrt{ab}}\)+\(\dfrac{1}{\sqrt{bc}}\)+\(\dfrac{1}{\sqrt{ca}}\) , (a,b,c > 0)
j/ a+b+c \(\ge\) \(\sqrt{ab}\)+\(\sqrt{bc}\)+\(\sqrt{ca}\) ( a,b,c \(\ge\)0)