Cho các số thực dương x,y,z thỏa mãn x+y+x=4
CMR: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Cho các số thực dương x, y, z thỏa mãn x+y+z=4 . Chứng minh rằng: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)
Đẳng thức xảy ra <=> x = 2 ; y = z = 1
Cho các số thực dương $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\le1\)
\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
\(\Rightarrow\dfrac{x}{x+\sqrt{x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự:
\(\dfrac{y}{y+\sqrt{y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(\dfrac{z}{z+\sqrt{z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng vế:
\(VT\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Cho x; y là các số không âm, z\(\le\) 0 thỏa mãn x^2 + y^2 + z^2 = 1
Chứng minh: \(\dfrac{x}{1-yz}+\dfrac{y}{1-xz}-\dfrac{z}{1+xy}\ge1\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Ta có x + y + z = 1 nên z = 1 - x - y.
Bất đẳng thức cần chứng minh tương đương:
\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).
Áp dụng bất đẳng thức Cauchy - Schwarz:
\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)
\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)
Cộng vế với vế của (1), (2) ta có đpcm.
cho x,y,z là các số thực dương thỏa mãn xy+yz+xz=xyz(x+y+z)
CMR \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge1\)
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Cho các số thực dương x, y, z thoả mãn x + y + z = 4
CMR \(\frac{1}{xy}+\frac{1}{xz}\ge1\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{x\left(y+z\right)}\)(1)
Lại có : \(x\left(y+z\right)\le\left(\frac{x+y+z}{2}\right)^2=4\)( theo AM-GM )
=> \(\frac{1}{x\left(y+z\right)}\ge\frac{1}{4}\)
=> \(\frac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{x\left(y+z\right)}\ge1\)
=> \(\frac{1}{xy}+\frac{1}{xz}\ge1\)( đpcm )
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=2\\y=z=1\end{cases}}\)
Cho x;y;z là các số dương thỏa mãn \(x^2+y^2+z^2=12\)cmr
\(\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\ge1\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^3+1=(x+1)(x^2-x+1)\leq \left(\frac{x+1+x^2-x+1}{2}\right)^2=\frac{(x^2+2)^2}{4}$
$\Rightarrow \sqrt{x^3+1}\leq \frac{x^2+2}{2}$
$\Rightarrow \frac{1}{\sqrt{x^3+1}}\geq \frac{2}{x^2+2}$. Tương tự với các phân thức khác và cộng theo vế:
$\sum \frac{1}{\sqrt{x^3+1}}\geq 2\sum \frac{1}{x^2+2}$
Áp dụng BĐT Cauchy-Schwarz:
$\sum \frac{1}{x^2+2}\geq \frac{9}{x^2+y^2+z^2+6}=\frac{9}{12+6}=\frac{1}{2}$
$\Rightarrow \sum \frac{1}{\sqrt{x^3+1}}\geq 2.\frac{1}{2}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=2$
Cho các số dương x, y, z thỏa mãn: x +y + z = 4.
Chứng minh: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Lời giải:
Sử dụng PP biến đổi tương đương kết hợp với BĐT Cauchy:
Ta có: \(\frac{1}{xy}+\frac{1}{xz}\geq 1\Leftrightarrow \frac{z}{xyz}+\frac{y}{xyz}\geq 1\)
\(\Leftrightarrow \frac{y+z}{xyz}\geq 1\Leftrightarrow y+z\geq xyz\)
\(\Leftrightarrow y+z\geq (4-y-z)yz\)
\(\Leftrightarrow y^2z+yz^2+y+z\geq 4yz(*)\)
Thật vậy, áp dụng BĐT Cauchy ta có:
\(\left\{\begin{matrix} y^2z+z\geq 2\sqrt{y^2z^2}=2yz\\ yz^2+y\geq 2\sqrt{z^2y^2}=2yz\end{matrix}\right.\)
Cộng theo vế: \(y^2z+yz^2+y+z\geq 4yz\). Do đó $(*)$ đúng. Ta có đpcm.
Dấu bằng xảy ra khi \((x,y,z)=(2,1,1)\)