cho tam giác cân ABC với AB=6cm,BC=2cm tìm độ dài AC
Câu 5: Trong các bộ ba đoạn thẳng có độ dài cho sau đây, bộ ba nào có thể là độ dài ba cạnh của một tam giác?
A. 3cm; 3cm; 6cm
B. 1cm; 2cm; 3cm
C. 6cm; 8cm; 9cm
D.10cm; 6cm; 7cm
Câu 6: Tam giác ABC cân tại A, đường cao AH. Biết AB = AC = 10cm; BC = 12cm. Độ dài đường cao AH là:
A. 7cm
B. 8cm
C. 6cm
D. 10cm
Câu 7: Cho tam giác DEF có DE = 1cm; DF = 7cm. Biết độ dài cạnh EF là một số nguyên. Vậy EF có độ dài là:
A. 7cm
B. 6cm
C. 8cm
D. 9cm
Câu 8: △DCE có đường cao DM và CN cắt nhau tại H. Khi đó:
A. EH ⊥ CN
B. EH⊥ DM
C. EH ⊥ DE
D. EH ⊥ DC
Câu 5: C,D
Câu 6; B
Câu 7: A
Câu 8:B
Cho tam giác ABC với BC = 1cm, AC = 6cm
Tìm độ dài AB biết độ dài này là số nguyên. Tam giác ABC là tam giác gì ?
Xét ΔABC có AC-BC<AB<AC+BC
=>5<AB<7
=>AB=6cm
=>ΔABC cân tại A
Cho tam giác ABC có độ dài các cạnh A B = 4 c m , A C = 5 c m v à B C = 6 c m và tam giác MNP có độ dài các cạnh M N = 3 c m , M P = 2 c m , N P = 2 , 5 c m thì:
A. S A B C S M N P = 4
B. S M N P S A B C = 1 2
C. S M N P S A B C = 1 3
cho tam giác ABC cân có AB=AC=4cm, BC=6cm. Kẻ AH vuông góc BC (H thuộc BC)
a) Chứng minh HB=HC
b) Tính độ dài AH
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE cân
a) Chứng minh HB=HC: Xét ΔAHB và ΔAHC có: ∠AHB=∠AHC=90(độ) AH cạnh chung AB=AC(gt) ⇒ ΔAHB = ΔAHC (ch-cgv) ⇒ HB=HC (2 cạnh tương ứng)
b) Ta có: HB=HC=BC/2=6/2=3(cm) Ta có: ΔAHB vuông tại H. ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2) =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm)
c) Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH Xét ΔAHD và ΔAHE có: ∠D=∠E=90(độ) AH cạnh chung ∠BAH=∠CAH (gt) ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b:
Sửa đề: AN=2cm
MN//BC
=>MN/BC=AN/AC
=>MN/10=2/8=1/4
=>MN=2,5cm
c AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm; DC=40/7cm
Cho tam giác ABC với hai cạnh BC=2cm AC= 8cm. Hãy tìm độ dài canh AB, biết rằng độ dài này là một số chẵn (cm) . tam giác ABC là tam giác gì?
Gọi x là độ dài cạnh còn lại
AC - BC < x < BC + AC
hay 8-2 < x < 8 + 2
6 < x < 10
mà x là số chẵn nên
x = 8cm
hay độ dài của cạnh AB= 8cm
Ta có:
AC = AB = 8cm
nên tam giác ABC cân tại A
Cho tam giác ABC có góc B=75 độ, góc C=45 độ và AB=2cm. Kẻ BH vuông góc với AC (H thuộc AC). Trên AB lấy I sao cho AI=AH
a. Tìm các tam giác cân có trong hình vẽ
b. tính độ dài BC
Cho tam giác ABC cân tại A, AB = AC = 4cm, BC = 2cm. Tính độ dài đường cao BD của tam giác.
Làm theo cách lớp 8:
Từ A kẻ AH _|_ BC (H nằm trên BC)
Mà tam giác ABC cân tại A => AH đồng thời là trung tuyến => BH = HC = 1cm
Xét tam giác AHB vuông tại H
=> AH2 = AB2 - BH2 = 42 - 12 = 15cm
=> \(AH=\sqrt{15}cm\)
ΔAHC ~ ΔBDC (g.g) vì:
+ Góc C chung
+ \(\widehat{AHC}=\widehat{BDC}=90^0\)
=> \(\frac{AH}{AC}=\frac{BD}{BC}\Rightarrow BD=\frac{AH.BC}{AC}=\frac{2\sqrt{15}}{4}=\frac{\sqrt{15}}{2}cm\)
Vậy \(BD=\frac{\sqrt{15}}{2}cm\)
Cho tam giác ABC, kẻ đường thẳng a//BC cắt AB,AC tại E,F. Biết AB=6cm,AE=2cm, AF=3cm. Tính độ dài AC,FC
Tam giác ABC có góc A =90° ; AB =45 cm; AC = 6cm. Trên BC lấy điểm D sao cho CD = 2cm. Đường vuông góc với BC ở D cắt AC ở E.
a)Tính độ dài EC=EA
b))Tính diện tích tam giác ABC