Cho B=36/1.3.5+36/3.5.7+...+36/25.27.29.CHứng minh B<3
Chứng minh rằng: B=36/1.3.5+36/3.5.7+36/5.7.9+...+36/25.27.29<3.
Chứng minh B=36/1.3.5+36/3.5.7+36/5.7.9+...+36/25.27.29<3
Chứng minh rằng: B=36/1.3.5+36/3.5.7+36/5.7.9+...+36/25.27.29<3.
ai đó kết bạn với mình nha mình hết lời rùi
Chứng minh rằng: B=36/1.3.5+36/3.5.7+36/5.7.9+...+36/25.27.29<3.
giúp mk với nha.
Gọi B là biểu thức đã cho.
Dễ dàng chứng minh:
...
Ta có:
B
Chứng minh B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}<3\)
Áp dụng: \(\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}\)
\(\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}
chứng minh rằng
\(B=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)
c/m : B=36/1.3.5+36/3.5.7+36/5.7.9+...+36/25.27.29 < 3
B = 9 . [ 4/1.3.5+4/3.5.7+4/5.7.9+...+4/25.27.29]
B = 9 . [ 1/3-1/783]
= 9 . [ 1/3-1/783]
= 9 . 260/783=260/87<261/87<3
Chứng minh rằng A = \(\frac{36}{1.3.5}+\frac{36}{3.5.7}+...+\frac{36}{25.27.29}
\(A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{25.27.29}\right)\)
\(A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(A=9.\frac{260}{87}=\frac{260}{87}
Chứng minh rằng:B=\(\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...+\dfrac{36}{25.27.29}< 3\)
Ai làm đúng mình tick cho nha
Ta có :
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...............+\dfrac{36}{25.27.29}\)
\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+\dfrac{4}{5.7.9}+.............+\dfrac{4}{25.27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+\dfrac{1}{5.7}-\dfrac{1}{7.9}+...........+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)
\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)
\(B=3-\dfrac{9}{783}< 3\)
\(\Rightarrow B< 3\rightarrowđpcm\)