Những câu hỏi liên quan
SK
Xem chi tiết
CV
6 tháng 12 2017 lúc 19:14

a) Mỗi điểm M xác định một cặp số \(\left(x_0;y_0\right)\). Ngược lại, mỗi cặp số \(\left(x_0;y_0\right)\) xác định một điểm M.

b) Cặp số \(\left(x_0;y_0\right)\) gọi là tọa độ của điểm M, \(x_0\) là hoang độ và \(y_0\)là tung độ của điểm M.

c) Điểm M có tọa độ \(\left(x_0;y_0\right)\) được kí hiệu là M\(\left(x_0;y_0\right)\).

Bình luận (0)
VT
7 tháng 12 2017 lúc 21:47

a,mỗi điểm M xác định điểm(x0;y0).Ngược lại ,mỗi cặp(x0;y0)xác định điểm M

b,Cặp số(x0;y0) là tọa độ của điểm M;x0 là hoành độ và y0 là tung độ của điểm M

c,Điểm M có tọa độ (x0;y0) được kí hiệu là M(x0;y0)

Bình luận (0)
CN
21 tháng 12 2017 lúc 20:41

a) Mỗi điểm M xác định một cặp số (x0;y0)(x0;y0). Ngược lại, mỗi cặp số (x0;y0)(x0;y0) xác định một điểm M.

b) Cặp số (x0;y0)(x0;y0) gọi là tọa độ của điểm M, x0x0 là hoang độ và y0y0là tung độ của điểm M.

c) Điểm M có tọa độ (x0;y0)(x0;y0) được kí hiệu là M(x0;y0)(x0;y0).

tick nha Công chúa cầu vồng

Bình luận (0)
TU
Xem chi tiết
NL
20 tháng 6 2020 lúc 23:33

Mặt cầu tâm \(I\left(2;1;1\right)\) bán kính \(R=3\)

Xét mặt phẳng (P) chứa M có phương trình: \(x+2y+2z-A=0\)

Ta cần tìm A nhỏ nhất sao cho (P) cắt (S) tại ít nhất 1 điểm

\(\Rightarrow d\left(I;\left(P\right)\right)\le R\Leftrightarrow\frac{\left|2+2+2-A\right|}{\sqrt{1^2+2^2+2^2}}\le3\)

\(\Leftrightarrow\left|A-6\right|\le9\Rightarrow-9\le A-6\le9\Rightarrow-3\le A\le15\)

\(\Rightarrow A_{min}=-3\Rightarrow\) phương trình (P): \(x+2y+2z+3=0\)

Pt đường thẳng d qua I và vuông góc (P): \(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+2t\end{matrix}\right.\)

M là giao điểm (P) và d nên tọa độ thỏa mãn:

\(2+t+2\left(1+2t\right)+2\left(1+2t\right)+3=0\Rightarrow t=-1\Rightarrow M\left(1;-1;-1\right)\)

\(\Rightarrow x+y+z=-1\)

Bình luận (0)
TV
Xem chi tiết
NT
7 tháng 4 2023 lúc 15:06

Vì 1/2<>1/3

nên hệ luôn có nghiệm duy nhất

x+y=2 và 2x+3y=m

=>2x+2y=4 và 2x+3y=m

=>-y=4-m và x+y=2

=>y=m-4 và x=2-y=2-m+4=6-m

x+2y<5

=>6-m+2m-8<5

=>m-2<5

=>m<7

=>Có 6 số nguyên dương thỏa mãn

Bình luận (0)
KB
Xem chi tiết
MN
7 tháng 3 2021 lúc 22:15

Cách giải thích trên là hoàn toàn sai vì 

Khi quả bóng bị bẹp.nhúng vào trong nước nóng thì nhiều độ tăng lên 

Mà chất khí nở ra khi nóng lên => Khí ở trong quả bóng nở ra vì nóng lên nên quả bóng phồng lại như cũ

Thí nghiệm 

Giả sử ta đâm thủng quả bóng :) thì không khí trong quả bóng ra vơi hết ra ngoài.Khi ta nhúng quả bóng vào trong nước nóng.Vỏ bóng bàn có nở ra nhưng không đáng kể.Còn không khí dù có còn lại ở trong bóng thì có nở ra cũng sẽ thoát ra ngoài

=> cách giải thích trên là hoàn toàn sai

Bình luận (0)
NV
Xem chi tiết
PA
17 tháng 2 2016 lúc 15:26

bài này hỏi rùi thây =0 

Bình luận (0)
NV
17 tháng 2 2016 lúc 15:27

phantuananh sai

Bình luận (0)
PA
17 tháng 2 2016 lúc 15:28

chuẩn rùi x=-1 y=1

Bình luận (0)
DM
Xem chi tiết
DN
Xem chi tiết
ND
7 tháng 5 2018 lúc 7:06

Nghe giải thích xong, khách lại sợ hơn vì cá mập nguy hiểm hơn cá sấu và ở những chỗ có cá mập thì không được tổ chức bãi tắm.

Bình luận (0)
H24
Xem chi tiết
PA
15 tháng 2 2016 lúc 22:15

=0 nha vân 

xo=-1;yo=1

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 12:15

a) \(f\left( 3 \right) = 1 - {3^2} = 1 - 9 =  - 8\).

\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \left( {1 - {x^2}} \right) = 1 - {3^2} = 1 - 9 =  - 8\).

Vì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) =  - 8\) nên hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 3\).

b) \(f\left( 1 \right) =  - 1\).

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} \right) = {1^2} + 1 = 2\).

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) =  - 1\).

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)

Vậy hàm số không liên tục tại điểm \({x_0} = 1\).

Bình luận (0)