Chứng minh rằng tổng các góc ngoài của một đa giác (lồi) có số đo là \(360^0\)
a) Tính tổng số đo các góc ngoài của tứ giác, ngũ giác, thập giác,
b) Chứng minh tổng số đo các góc ngoài của một đa giác (lồi) là 360°.
a) Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của tứ giác (lồi) là 1800 Þ Tổng số đo các góc trong và các góc ngoài của tứ giacs là 4.1800 = 7200.
Mặt khác, tổng số đo các góc trong của tứ giác là: (4-2).1800 = 3600.
Þ Tổng số đo các góc ngoài của tứ giác là: 7200 - 3600 = 3600
Tương tự, ta cũng tính được tổng số đo các góc ngoài của ngũ giác và thập giác là 3600.
b) Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của hình n - giác (lồi) là 1800 Þ Tổng số đo các góc trong và các góc ngoài của đa giác là n.1800.
Mặt khác, tổng số đo các góc trong của đa giác là (n - 2).1800.
Þ Tổng số đo các góc ngoài của đa giác là:
n.1800 - (n - 2).1800 = 3600.
Chứng minh rằng tổng số đo các góc ngoài của một đa giác luôn bằng 3600
Chứng minh rằng tổng các góc ngoài của một đa giác có số đo bằng 360 0
Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của hình n-giác bằng 180 0 . Hình n-giác có n đỉnh nên tổng số đo các góc trong và góc ngoài của đa giác bằng n. 180 0 . Mặt khác, ta biết tổng các góc trong của hình n-giác bằng (n – 2). 180 0
Vậy tổng số đo các góc ngoài của hình n-giác là:
n. 180 0 – (n – 2). 180 0 = n. 180 0 – n. 180 0 + 2. 180 0 = 360 0
Cho tam giác ABC .Chứng minh rằng tổng số đo của ba góc ngoài tại các đỉnh A,B,C của tam giác bằng 3600
Ai nhanh mk sẽ tick
Chẳng những đối với tam giác mà đối với mọi đa giác lồi,tổng số đo các góc ngoài luôn luôn bằng 360 độ
Ở cuối chương tứ giác (lớp 8),em sẽ học công thức tổng quát tính tổng số đo các góc trong của n-giác lồi (n>=3) là: (n-2).180độ
Góc ngoài tại mỗi đỉnh là góc kề bù với góc trong tại đỉnh đó
Tại n- đỉnh ta có n-góc bẹt là tổng số đo của n-góc TRONG và NGOÀI của n-giác lồi
Vậy tổng số đo n- góc ngoài của n-giác lồi là
n.180độ - (n-2).180độ=2.180độ=360độ
-----------------
Tính số cạnh của một đa giác biết rằng tất cả các góc của đa giác bằng nhau và tổng của tất cả các góc ngoài với một trong các góc của đa giác có số đo bằng 480 độ
Một đa giác có tổng số đo các góc trong gấp 2 lần tổng số đo các góc ngoài thì số cạnh của đa giác đó là bao nhiêu ?
Bài 1: Tìm số cạnh của một đa giác biết số đường chéo hơn số cạnh là 7. Bài 2: Tổng tất cả các góc trong và một góc ngoài của một đa giác có số đo là 47058,5°. Hỏi đa giác đó có bao nhiêu cạnh? Bài 3: Tổng số đo các góc của một đa giác n - cạnh trừ đi góc A của nó bằng 5700. Tính số cạnh của đa giác đó và A. Bài 4: Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC: (Hình đây) [Giúp mình với mng ơi, mình cần gấp. Mấy bài trên thuộc bài Đa giác, đa giác đều nha]
CMR một đa giác lồi n cạnh có số đường chéo là: n(n-3)/2 và có tổng số đo các góc trong của đa giác là (n-2).180
hình n giác vẽ các đường chéo từ 1 đỉnh bất kỳ của đa giác đó
khi đó các đuờng chéo và các cạnh tạo thành (n-2) tam giác
nên ta được tổng số đo các góc của n giác chính là tổng số đo của ( n -2) tam giác
suy ra : tổng số đo các góc là : ( n- 2) . 180
học tốt
Chứng minh rằng tổng ba góc ngoài ở ba đỉnh của một tam giác bằng \(360^0?\)
Gọi A^1, B^1, C^1 là 3 góc trong của tam giác ABC. A^2, B^2,C^2 là 3 góc ngoài của tam giác ABC.
Ta có:
A^1 + A^2 = 1800
B^1 + B^2 = 1800
C^1 + C^2 = 1800
---------------------
Cộng vế theo vế được:
A^1 +B^1 +C^1 +A^2 +B^2 +C^2 = 3.1800
mà A^1 +B^1 +C^1 = 1800 (tổng 3 góc trong của tam giác)
=> A^2 +B^2 +C^2 = 3.1800 - 1800 = 2.1800 = 3600