cho A=\(\dfrac{n+2}{n-5}\) (\(n\in Z,n\ne5\)). Tìm x để \(A\in Z\)
Cho A=\(\dfrac{n+2}{n-5}\left(n\in z;n\ne5\right)\) Tìm n để A ϵ Z
Ta có : \(A=\dfrac{n+2}{n-5}\)
\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)
\(\Rightarrow A=1+\dfrac{7}{n-5}\)
Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)
\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\)
mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
\(Vậy...\)
Cho A = \(\frac{n+2}{n-5}\left(n\in z;n\ne5\right)\)Tìm x để A\(\in\)Z
\(ĐểA\in Z\)thì:
\(n+2⋮n-5\)
=> \(\left[n-5\right]+7⋮n-5\)
=> 7 chia hết cho n - 5
=> n -5 E Ư[7] E {-7;-1;1;7}
=> n E {-2;4;6;12}
Vậy: n = -2; n = 4 n = 6; n = 12
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\)thì n-5 là ước nguyên của 7
\(n-5=1\Rightarrow n=6\)
\(n-5=7\Rightarrow n=12\)
\(n-5=-1\Rightarrow n=4\)
\(n-5=-7\Rightarrow n=-2\)
Ai thấy đúng k cho mink nha !!!
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để A \(\in\)Z <=> n - 5 \(\in\)Ư(7) = {1;-1;7;-7}
Ta có bảng:
n - 5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
Vậy ...
Cho \(A=\frac{n+2}{n+5}\left(n\in Z;n\ne5\right)\)Tìm n để A\(\in\)Z
Ta có:
\(A=\frac{n+2}{n+5}=\frac{n+5-3}{n+5}=1-\frac{3}{n+5}\)
Để \(A\in Z\)thì \(\frac{3}{n+5}\in Z\)
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Rightarrow n+5\inư\left(3\right)\)
\(\Rightarrow n+5\in\left\{1;-1;3;-3\right\}\)
Lập bảng :
n+5 | 1 | -1 | 3 | -3 |
n | -4 | -6 | -2 | -8 |
Vậy \(x\in\left\{-4;-6;-2;-8\right\}\)
Cho \(A=\frac{n+2}{n-5}\) \(\left(n\in Z;n\ne5\right)\). Tìm n để \(A\in Z\)
\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để A thuộc Z thì 7 chia hết cho n-5
\(n-5\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)
n-5 | -1 | -7 | 1 | 7 |
n | -6 | -12 | -4 | 2 |
Câu 1:Chứng tỏ rằng phần số
\(\frac{2n+1}{3n+2}\)là phân số tối giản
Câu 2:
Cho \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)Tìm x để \(A\in Z\)
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
2) \(A=\frac{n+2}{n-5}\left(n\in Z;n\ne5\right)\)
\(\Rightarrow\left(n+2\right)⋮\left(n-5\right)\)
\(\Rightarrow\left(n+2\right)-\left(n-5\right)⋮\left(n-5\right)\)
\(\Rightarrow7⋮n-5\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta xét bảng:
\(n-5\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(n\) | \(4\) | \(6\) | \(-2\) | \(12\) |
Vậy\(n\in\left\{-2;4;6;12\right\}\)
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
a/ Cho M=\(\dfrac{\sqrt{x}-1}{2}\). Tìm x ∈ Z để M ∈ Z biết x<50
b/ Cho N=\(\dfrac{9}{\sqrt{x}-5}\). Tìm x ∈ Z để N ∈ Z
\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)
Cho đa thức M(x)=\(x^2-2;N\left(x\right)=-x^3-x\)
Tìm \(x\in Z\) để \(\dfrac{N\left(x\right)}{M\left(x\right)}\in Z\)
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
1: cho \(A=\dfrac{2n+3}{n-1}\)
a, tìm điều kiện để A là số hữu tỉ
b, tìm \(n\in Z\) để A có giá trị là số nguyên
2: cho \(x=\dfrac{a}{n},y=\dfrac{b}{n}\left(a,b,n\in Z;n>0;x< y\right)\)
chứng tỏ rằng nếu \(Z=\dfrac{a+b}{2n}\) thì x < z < y
1.a) để A là số hữu tỉ thì 2n+3 nguyên và n - 1 khác 0
từ hai điều kiện trên suy ra n nguyên và n khác 1
b) để A nguyên thì 2n+3 ⋮ n - 1
⇒ 2(n - 1) +5 ⋮ n - 1
⇒ 5 ⋮ n - 1
⇒n ∈ {-4; 0; 2; 6}
2. x < y ⇔ \(\dfrac{a}{n}< \dfrac{b}{n}\)
\(\Rightarrow\dfrac{2a}{2n}< \dfrac{a+b}{2n}< \dfrac{2b}{2n}\Leftrightarrow x< z< y\)