Những câu hỏi liên quan
PK
Xem chi tiết
DT
1 tháng 8 2018 lúc 21:31

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

Bài này mình làm bài KT ở lớp rồi bạn ạ,ko thể tính được mà so sánh với -1/2

\(A=-\left(\frac{3\cdot8\cdot15}{4\cdot9\cdot16}....\frac{9999}{10000}\right)\)Vì A có 99 số hạng (số lẻ)

\(A=-\left(\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5}{2\cdot2\cdot3\cdot3\cdot4\cdot4}...\frac{99\cdot101}{100\cdot100}\right)\)

\(A=-\left(\frac{1}{2}\cdot\left(\frac{3\cdot2\cdot4\cdot3}{2\cdot3\cdot3\cdot4}...\frac{99}{100}\right)\cdot\frac{101}{100}\right)\)

\(A=-\left(\frac{1}{2}\cdot\frac{101}{100}\right)< \left(-\frac{1}{2}\cdot\frac{100}{100}\right)\Leftrightarrow-\frac{101}{200}< \frac{-100}{200}=-\frac{1}{2}\)

Bình luận (0)
KB
2 tháng 8 2018 lúc 5:29

\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{99^2}-1\right)\)

\(=-\frac{3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)

\(=\frac{-\left(3.8...9999\right)}{\left(2.3.4...100\right)^2}=\frac{-\left(1.3.2.4....99.101\right)}{\left(2.3.4...100\right)^2}\)

\(=\frac{-\left[\left(1.2.3..99\right).\left(3.4.5...101\right)\right]}{\left(2.3..4...100\right).\left(2.3.4...100\right)}=\frac{-101}{100.2}=\frac{-101}{200}\)

Bình luận (0)
PK
2 tháng 8 2018 lúc 19:53

Dũng Lê Trí làm sai đề rồi bạn ơi.

Bình luận (0)
NB
Xem chi tiết
PH
Xem chi tiết
TD
7 tháng 9 2017 lúc 20:26

\(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+\frac{4}{96}+...+\frac{98}{2}+\frac{99}{1}\)

\(A=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+\left(\frac{4}{96}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(A=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+\frac{100}{96}+...+\frac{100}{2}\)

\(A=100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=100\)

Bình luận (0)
TG
Xem chi tiết
DA
20 tháng 2 2020 lúc 14:38

1 + (-2) + 3 + (-4) + . . . + 19 + (-20)

= -1 + ( -1)+....+(-1)

= (-1). 10

= -10

1 – 2 + 3 – 4 + . . . + 99 – 100

= (-1)+(-1)+...+(-1)

= -1.50

= -50

2 – 4 + 6 – 8 + . . . + 48 – 50

= (-2)+(-2)+(-2)+....(-2)

= -2. 25 +26

= -24

Ko chắc ở phần 2 – 4 + 6 – 8 + . . . + 48 – 50 này nha

Bình luận (0)
 Khách vãng lai đã xóa
KK
20 tháng 2 2020 lúc 14:38

bạn áp dụng công thứ tính tổng năm lớp 4 hok cũng tính đc mak bn

chúc bn hok tot

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 3 2020 lúc 10:46

  1 + (- 2) + 3 + (- 4) + ... + 19 + (- 20)

= [ 1 + (- 2) ] + [ 3 + (- 4) ] + .... + [ 19 + (- 20) ]

=  (- 1) + (- 1) + .... + (- 1)      ( có 10 ssh )

=  (- 1) . 10

=     -10

    1 - 2 + 3 - 4 + ..... + 99 - 100

=  ( 1 - 2 ) + ( 3 - 4 ) + ...... + ( 99 - 100 )

=  (- 1) + (- 1) + ...... + (- 1)       ( có 50 ssh )

=   (- 1) . 50

=   -50

     1+2-3-4+....+97+98-99-100

=( 1+2-3-4 ) + ( 5+6-7-8 ) +.....+ ( 97+98-99-100 )

=  -4 + (-4)+ ....+ (-4)      ( có 25 ssh )

=   -4 . 25

=   -100

   

Bình luận (0)
 Khách vãng lai đã xóa
NY
Xem chi tiết
NP
4 tháng 2 2016 lúc 19:08

a,1+(-2)+3+(-4)+..........+19+(-20)

=[1+(-2)]+[3+(-4)]+........+[19+(-20)]

=(-1)+(-1)+.......+(-1){Có 10 số (-1)}

=(-1).10

=-10

b,1-2+3-4+........+99-100

=(1-2)+(3-4)+........+(99-100)

=(-1)+(-1)+.........+(-1){ Có 50 số (-1)}

=(-1).50

=-50

Sai đề câu c,-1+3-5+7-9+.........+99-101

=(-1)+(3-5)+(7-9)+........+(99-101)

=(-1)+(-2)+(-2)+...........+(-2){Có 25 số (-2)}

=(-1)+(-2).25

=(-1)+(-50)

=-51

Hình như sai đề d,1+2-3-4+............+98-99-100+101

=1+(2-3-4+5)+........+(98-99-100+101)

=1+0+.........+0

=1

Bình luận (0)
KL
17 tháng 8 2018 lúc 18:15

hai yen viet sai đề bài nhiều quá

Bình luận (0)
TT
8 tháng 2 2021 lúc 11:01

đầu bài đúng rồi, khuong ngoc linh ngu, đần độn

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
4 tháng 12 2021 lúc 21:36

Bài 1: 

a: Tổng là:

(-19+19)+(-18+18)+...+20=20

b: Tổng là:

-18+(-17+17)+...+0=-18

Bình luận (1)
H24
Xem chi tiết
BD
15 tháng 6 2023 lúc 9:31

\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)

\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)

\(=\dfrac{75}{101}\)

\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

Bình luận (0)
LV
15 tháng 6 2023 lúc 9:29

Tính nhanh:

a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\times\dfrac{100}{101}\)

\(\dfrac{75}{101}\)

b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)

\(=\dfrac{100}{2}\)

\(=50\)

Bình luận (0)
Xem chi tiết

1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)

=1-2+3-4+...+19-20

=(1-2)+(3-4)+...+(19-20)

=(-1)+(-1)+...+(-1)
=(-1).10

=-10

2/ 1 – 2 + 3 – 4 + . . . + 99 – 100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=(-1).50

=-50

3/ 2 – 4 + 6 – 8 + . . . + 48 – 50

 =(2-4)+(6-8)+...+(48-50)

 =(-2)+(-2)+...+(-2)

 =(-2).13

 =-26

4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99

=(-1)+(3-5)+(7-9)+...+(97-99)

=(-1)+(-2)+(-2)+...+(-2)

=(-1)+(-2).45

=(-1)+(-90)

=(-91)

5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100

=(1+2-3-4)+...+(97 + 98 – 99 - 100)

=(-4)+...+(-4)

=(-4).25

=-100

\(HT\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
16 tháng 11 2021 lúc 19:45

1/ \(1+(-2)+3+(-4)+...+19+(-20)\)

\(=(-1+3+5+...+19)-(2+4+6+...+20)\)

\(=(19-1):2+1=10\)

\(=(1+19).10:2-(20+2).10:2\)

\(=100-110\)

\(=-10\)

2/ \(1 – 2 + 3 – 4 + . . . + 99 – 100\)

\(= ( 1 - 2 ) + ( 3 - 4) + .... + ( 99 - 100 )\)

\(= -1 + ( -1) + ....+ ( -1)\)

\(=(-1).50\)

\(=-50\)

3/ \( 2 – 4 + 6 – 8 + . . . + 48 – 50\)

\(= 2 +( – 4 + 6)+( – 8+10) + . . . +( -44+46)+ ( 48 – 50)\)

\(= 2+2+2+...+2+( -2) \)

\(= 2.12 +( -2 ) \)

\(=22\)

4/ \(-1+3-5+7-...+97-99\)

\(= ( -1 + 3 ) + ( -5 + 7 )+....+( -93 +95 ) + ( 97 - 99 )\)

\(= -2+( -2)+...+( -2)+2\)

\(= -2.24+2\)

\(=-46\)

5/ \( 1+2-3-4+...+97+98-99-100\)

\(= ( 1+2-3-4)+...+( 97+98-99-100)\)

\(= -4+...+( -4)\)

\(=(-4).25\)

\(=-100\)

Bình luận (0)
 Khách vãng lai đã xóa
H24

Thanks mn nhìu nhaaaaaa! Chúc mn hok tốt ah! Xin lỗi mn nhìu nha mik k k đúng đc! Srr mn nhiều ah!!! T^T

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
NM
22 tháng 7 2023 lúc 15:02

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

Bình luận (0)
GH
22 tháng 7 2023 lúc 15:04

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

Bình luận (0)
NB
22 tháng 7 2023 lúc 15:35

xin loi mik danh nham nhe bai do la 10000 nhe

 

 

Bình luận (0)
NY
Xem chi tiết
NP
14 tháng 7 2019 lúc 13:42

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=\frac{3}{4}\)

\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=2.\frac{3}{4}\)

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right).x=\frac{3}{2}\)

\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right).x=\frac{3}{2}\)

\(\left(1-\frac{1}{101}\right).x=\frac{3}{2}\)

\(\frac{100}{101}.x=\frac{3}{2}\)

\(x=\frac{3}{2}:\frac{100}{101}\)

\(x=\frac{303}{200}\)

Bình luận (0)