Làm tính chia :
\(\left(2x^4+x^3-3x^2+5x-2\right):\left(x^2-x+1\right)\)
Làm tính chia :
a) \(\left(2x^5-5x^3+x^2+3x-1\right):\left(x^2-1\right)\)
b) \(\left(5x^5-2x^4-9x^3+7x^2-18x-3\right):\left(x^2-3\right)\)
Làm tính chia:
a) \(\left(-2x^4+5x^3-x^2+8\right):\left(3x^2-1\right)\)
b) \(\left(5x^4-2x^2+5\right):\left(3x^2+1\right)\)
a)làm tính nhân: (x+2)\(\left(x^2+3x+1\right)\)
b)Làm tính chia: \(\left(2x^3+10x^2+9x+4\right):\left(x+4\right)\)
a) (x + 2)(x2 + 3x + 1)
= x.x2 + x.3x + x.1 + 2.x2 + 2.3x + 2.1
= x3 + 3x2 + x + 2x2 + 6x + 2
= x3 + 5x2 + 7x + 2
b) (2x3 + 10x2 + 9x + 4) : (x + 4)
= (2x3 + 8x2 + 2x2 + 8x + x + 4) : (x + 4)
= [(2x3 + 8x2) + (2x2 + 8x) + (x + 4)] : (x + 4)
= [2x2(x + 4) + 2x(x + 4) + (x + 4)] : (x + 4)
= (x + 4)(2x2 + 2x + 1) : (x + 4)
= 2x2 + 2x + 1
Làm tính chia :
a) \(\left(6x^2+13x-5\right):\left(2x+5\right)\)
b) \(\left(x^3-3x^2+x-3\right):\left(x-3\right)\)
c) \(\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)
a: \(=\dfrac{6x^2+15x-2x-5}{2x+5}=3x-1\)
b: \(=\dfrac{x^2\left(x+3\right)+\left(x-3\right)}{x-3}=x^2+1\)
c: \(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}=2x^2+x+1\)
Làm tính chia:
\(\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)
Tìm x:
a. \(\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\)
b. \(-5\left(x+3\right)^2+\left(x-1\right)\left(x+1\right)+\left(2x-3\right)^2=\left(5x-2\right)^2-5x\left(5x+3\right)\)
\(a,\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\\ \Leftrightarrow\left(9x^2-16\right)-\left(4x^2+20x+25\right)=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\\ \Leftrightarrow9x^2-16-4x^2-20x-25=5x^2-6x+27\\ \Leftrightarrow5x^2-20x-41=5x^2-5x+27\\ \Leftrightarrow-15x=68\\ \Leftrightarrow x=-\dfrac{68}{15}\)Vậy..
Câu sau cũng tương tự nhé
Làm tính chia :
a) \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
b) \(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
c) \(\left(x^4-x-14\right):\left(x-2\right)\)
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)
\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)
\(\Leftrightarrow-7x+12x=20+2\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\dfrac{22}{5}\)
tick cho mk nha
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)
\(x_1=3;x_2=\dfrac{-11}{10}\)
Tick cho mk nha
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Rightarrow x=\dfrac{43}{42}\)
Tick cho mk nha
Giair phương trình sau:
a,\(2x^3+5x^2-3x=0\) b,\(2x^3+6x^2=x^2+3x\)
c,\(x^2+\left(x+2\right)\left(11x-7\right)=4\) d,\(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
e, \(x^3+1=x\left(x+1\right)\) f,\(x^3+x^2+x+1=0\)
g,\(x^3-3x^2+3x-1=0\) h,\(x^3-7x+6=0\)
i,\(x^6-x^2=0\) j,\(x^3-12=13x\)
k,\(-x^5+4x^4=-12x^3\) l, \(x^3=4x\)
a) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
b) Ta có: \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)
Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!