Những câu hỏi liên quan
NM
Xem chi tiết
NV
30 tháng 4 2022 lúc 22:26

undefined

\(\text{a)Xét }\Delta ABD\text{ và }\Delta ACD\text{ có:}\)

\(AB=AC\left(\Delta ABC\text{ cân tại A}\right)\)

\(\widehat{BAD}=\widehat{CAD}\left(gt\right)\)

\(AD\text{ chung}\)

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\left(\text{hai góc tương ứng}\right)\)

\(\text{b)Ta có:}\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\)

\(\text{Mà }\widehat{ABD}=\widehat{ACD}\left(cmt\right)\)

\(\Rightarrow\widehat{DBC}=\widehat{DCB}\)

 

Bình luận (1)
NM
Xem chi tiết
H24
30 tháng 4 2022 lúc 22:40

Đây nha:
 

a. Xét tam giác ABD và tam giác ACD có:
góc BAD = góc BAC (gt)
AD chung
AB = AC (tam giác ABC cân)
=> tam giác ABD = tam giác ACD (cgc)

b. Gọi E là trung điểm của BC
Có: góc BAC = góc BAD + góc CAD mà góc BAD = góc CAD
=> AD là đường phân giác
Lại có: tam giác ABC cân tại A => AD đồng thời là đường trung trực của tam giác ABC
Do đó: DE là đường trung trực cũng là đường phân giác của tam giác BDC.
=> DE vuông với BC tại E; góc BDE = góc CDE
Xét tam giác BDE và tam giác CDE vuông tại E có:
DE chung
góc BDE = góc CDE (cmt)
=> tam giác BDE = tam giác CDE (ch-cgv)
=> góc DBC = góc DCB (2 góc tương ứng)

Bình luận (0)
H24
30 tháng 4 2022 lúc 22:41

Bình luận (0)
NH
Xem chi tiết
CN
Xem chi tiết
NT
16 tháng 5 2022 lúc 13:39

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó; ΔABD=ΔACD

b: Xét ΔDBC có DB=DC

nên ΔDBC cân tại D

hay \(\widehat{DBC}=\widehat{DCB}\)

Bình luận (0)
H24
16 tháng 5 2022 lúc 14:24

Sửa đề chứng minh tam giác ABC = tam giác ACD => △ABD = △ACD

Xét △ABD và △ACD có

AB = AC

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\)

nên  △ABD = △ACD (c-g-c)

b)

Ta có:

\(\text{△ABD = △ACD }\)

\(\text{=> DB = DC}\)

\(\text{=> △DBC cân tại D}\)

\(=>\)\(\widehat{DBC}=\widehat{DCB}\)

Bình luận (0)
GY
Xem chi tiết
SK
Xem chi tiết
TM
19 tháng 4 2017 lúc 15:15

a) Căn cứ các kí hiệu đã cho trên hình của bài 39 ta có: ∆ABD và ∆ACD có:

AB = AC

BAD^=CAD^

AD là cạnh chung

=> ∆ABD = ∆ACD

b) Vì ∆ABD = ∆ACD

=> BD = CD => ∆BCD cân tại D

=>

Bình luận (0)
TB
19 tháng 4 2017 lúc 15:17

Hướng dẫn:

a) ∆KIL có ˆII^ = 620

nên ˆIKL+ˆILKIKL^+ILK^ = 1180

Vì KO và LO là phân giác ˆIKLIKL^, ˆILKILK^

nên ˆOKL+ˆOLKOKL^+OLK^= 1212(ˆIKL+ˆILKIKL^+ILK^)

=> ˆOKL+ˆOLKOKL^+OLK^ = 1212 1180

ˆOKL+ˆOLKOKL^+OLK^ = 590

∆KOL có ˆOKL+ˆOLKOKL^+OLK^ = 590

nên ˆKOLKOL^ = 1800 – 590 = 1210

c) Vì O là giao điểm của hai đường phân giác của ˆKK^ˆLL^ nên O cách đều ba cạnh của tam giác IKL

Bình luận (0)
TT
27 tháng 4 2017 lúc 17:08

a,

Xét tam giác ABD và tam giác ACD có :

AD là cạnh chung

góc A1 = góc A2

AB=AC

Do đó: tam giác ABD - tam giác ACD ( c-g-c )

b,

từ tam giác ABD= tam giác ACD (c-g-c)

suy ra đc BD=BC

suy ra dc tam giác DBC là tam giác cân

suy ra dc góc DBC=góc DCB

Bình luận (0)
CC
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết