\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}và2x^2+2y^2-3t^2=-1\)
Tìm x; y ; t
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm x + y + z biết
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}và2x^2+2y^2-3z^2=-100\)
Từ
\(\frac{x}{3}+\frac{y}{4}+\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau . Ta có
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=\frac{1}{4}\)
\(\Rightarrow\begin{cases}x=\frac{3}{2}\\y=2\\z=\frac{5}{2}\end{cases}\)
Vậy \(x=\frac{3}{2};y=2;=\frac{5}{2}\)
Có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\)\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tie số bằng nhau ta có:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)
=>\(\frac{2x^2}{18}=4\Rightarrow2x^2=18\cdot4=72\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{2y^2}{32}=4\Rightarrow2y^2=32\cdot4=128\Rightarrow y^2=64\Rightarrow y=8\)
\(\frac{3z^2}{75}=4\Rightarrow3z^2=75\cdot4=300\Rightarrow z^2=100\Rightarrow z=10\)
Áp dụng tính chất cũa dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{2.3^2}=\frac{2y^2}{2.4^2}=\frac{3z^3}{3.5^2}=\frac{2x^2+2y^2+3z^3}{2.3^2+2.4^2+3.5^2}=-\frac{100}{125}=-\frac{4}{5}\)
\(\frac{2x^2}{2.3^2}=-\frac{4}{5}\Rightarrow x=-\frac{4}{45}\)
\(\frac{2y^2}{2.4^2}=-\frac{4}{5}\Rightarrow x=-\frac{1}{20}\)
\(\frac{3z^3}{3.5^2}=-\frac{4}{5}\Rightarrow z=-20\)
tìm x,y,z
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}và2x^2+2y^2-3z^2=100\)
ta co :
x/3=y/4=z/5 => 2x^2/36=2y^2/64=3z^2/225 va 2x^2+2y^2-3z^2=100
Ap dung tinh chat day ti so bang nhau :
2x^2/36=2y^2/64=3z^2/225 = 2x^2+2y^2-3z^2/36+64-225=100/-125=-0,8
Suy ra :
2x^2/36=-0,8 => 2x^2= -0,8 . 36:2=-14,4 => x= tu tih nhe so ma co the bang mu 2 y
2y^2/64=-0,8=> 2y^2 = -0,8.64:2=- 25,6 => x= nhu tren nhe
3z^2/225=-0,8=>3z^2=-0,8.225:3=-60 = > x = nhu tren nhe
lik e
\(1.\frac{x}{3}=\frac{y}{4}vàx+y=14\)
\(2.\frac{x}{5}=\frac{y}{3}vàx-y=20\)
\(3.\frac{x}{7}=\frac{y}{4}vàx-y=30\)
\(4.\frac{x}{5}=\frac{y}{7}vàx-y=48\)
\(5.\frac{x}{3}=\frac{y}{6}vàx+y=90\)
\(6.\frac{x}{-2}=\frac{y}{5}vàx+y=12\)
\(7.\frac{x}{4}=\frac{y}{-7}vàx-y=33\)
\(8.\frac{x}{3}=\frac{y}{2}và2x+5y=32\)
\(9.\frac{x}{5}=\frac{y}{2}và3x-2y=44\)
\(10.\frac{x}{3}=\frac{y}{5}và2x+4y=28\)
Tìm x, y biết
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+2y-z=50\)khi đó x+y+ z=..........
Tính
A = \(\frac{0,6-\frac{1}{3}+\frac{3}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
Tìm x,y,z biết:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}vàx-2y+3z=-10\)
\(\frac{x}{5}=\frac{y}{6}và2x^2-y^2=56\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}và2x^2+2y\)
ai giải đc mình cho 100000 like
bạn cho chưa hết yếu tố thì phải
2x^2 + 2y = ???
Tìm 3 số x,y,z biết:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{5}và2x+3y-z=50\)
đặt: x-1/2=y-2/3=z-3/4=k => x-1=2k;y-2=3k;z-3=4k
=> x= 2k +1 ;y = 3k+2; z = 4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3y-x=50
ta được:
2.(2k+1)+3.(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2.5+1=11
y=3.5+2=17
z=4.5+3=23
kết bạn với mình nha các bạn !
tìm x,y,z biết
a)\(\frac{x}{y}=\frac{7}{3}và5x-2y=87\)
b)\(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
c)\(\left(\frac{-2}{3}\right).x=\left(\frac{-2}{3}\right)^5\)
d)\(\left(\frac{-1}{3}\right)^3.x=\frac{1}{81}\)
*Bài làm:
a, Ta có: \(\frac{x}{y}\) = \(\frac{7}{3}\) (theo đề bài).
⇒ \(\frac{x}{7}\) = \(\frac{y}{3}\)
⇒ \(\frac{5x}{35}\) = \(\frac{2y}{6}\) . Mà \(5x-2y\) = \(87\) .
Áp dụng tính chất dãy tỉ số bằng nhau , ta được:
\(\frac{5x}{35}\) = \(\frac{2y}{6}\) = \(\frac{5x-2y}{35-6}\) = \(\frac{87}{29}\) = \(3\) .
⇒ \(\left\{{}\begin{matrix}\frac{5x}{35}=3\\\frac{2y}{6}=3\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}5x=3.35=105\\2y=3.6=18\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=105\div5=21\\y=18\div2=9\end{matrix}\right.\)
➤ Vậy: \(\left(x;y\right)=\left(21;9\right)\) .
b, Ta có: \(\frac{x}{19}\) = \(\frac{y}{21}\)
⇒ \(\frac{2x}{38}\) = \(\frac{y}{21}\) . Mà \(2x-y\) = \(34\) .
Áp dụng tính chất dãy tỉ số bằng nhau , ta được:
\(\frac{2x}{38}\) = \(\frac{y}{21}\) = \(\frac{2x-y}{38-21}\) = \(\frac{34}{17}\) = \(2\) .
⇒ \(\left\{{}\begin{matrix}\frac{2x}{38}=2\\\frac{y}{21}=2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x=2.38=76\\y=2.21=42\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=76\div2=38\\y=42\end{matrix}\right.\)
➤ Vậy: \(\left(x;y\right)=\left(38;42\right)\) .
c, Ta có: \(\left(\frac{-2}{3}\right)\) . \(x\) = \(\left(\frac{-2}{3}\right)^5\)
⇒ \(x\) = \(\left(\frac{-2}{3}\right)^5\) \(\div\) \(\left(\frac{-2}{3}\right)\)
⇒ \(x\) = \(\left(\frac{-2}{3}\right)^4\)
⇒ \(x\) = \(\frac{\left(-2\right)^4}{3^4}\)
⇒ \(x\) = \(\frac{16}{81}\)
➤ Vậy: \(x\) = \(\frac{16}{81}\) .
d, Ta có: \(\left(\frac{-1}{3}\right)^3\) . \(x\) = \(\frac{1}{81}\)
⇒ \(\frac{\left(-1\right)^3}{3^3}\) . \(x\) = \(\frac{1}{81}\)
⇒ \(\frac{-1}{27}\) . \(x\) = \(\frac{1}{81}\)
⇒ \(x\) = \(\frac{1}{81}\) \(\div\) \(\frac{-1}{27}\)
⇒ \(x\) = \(\frac{-1}{3}\)
➤ Vậy: \(x\) = \(\frac{-1}{3}\) .
☛ Chúc bạn học tốt!
c) \(\left(-\frac{2}{3}\right).x=\left(-\frac{2}{3}\right)^5\)
=> \(x=\left(-\frac{2}{3}\right)^5:\left(-\frac{2}{3}\right)\)
=> \(x=\left(-\frac{2}{3}\right)^4\)
=> \(x=\frac{16}{81}\)
Vậy \(x=\frac{16}{81}.\)
d) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
=> \(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)
=> \(x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)
=> \(x=-\frac{1}{3}\)
Vậy \(x=-\frac{1}{3}.\)
Chúc bạn học tốt!
Tìm x,y,z biết
1. \(\frac{x}{3}=\frac{z}{4};\frac{y}{2}=\frac{z}{3}vàx-y-z=33\)
2 . \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}và2x+3y+5z=127\)