Những câu hỏi liên quan
ND
Xem chi tiết
GD

Biểu thức nào em?

Bình luận (1)
NH
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 7 2023 lúc 23:57

a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)

b: A>0

=>x+1>0

=>x>-1

c: x^2+3x+2=0

=>(x+1)(x+2)=0

=>x=-2(loại) hoặc x=-1(loại)

Do đó: Khi x^2+3x+2=0 thì A ko có giá trị

Bình luận (0)
H24
Xem chi tiết
PA
10 tháng 5 2017 lúc 20:46

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

Bình luận (0)
AN
Xem chi tiết
NL
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Bình luận (0)
VT
Xem chi tiết
TH
17 tháng 4 2022 lúc 20:25

B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)

\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)

b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)

\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))

\(\Leftrightarrow x>-1\).

-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).

 

Bình luận (0)
NH
Xem chi tiết
NT
12 tháng 1 2023 lúc 9:24

a: ĐKXĐ: x<>1; x<>2; x<>3

\(K=\left(\dfrac{x^2}{\left(x-2\right)\left(x-3\right)}+\dfrac{x^2}{\left(x-1\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+2x^2+1-x^2}\)

\(=\dfrac{x^3-x^2+x^3-3x^2}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}\)

\(=\dfrac{2x^3-4x^2}{\left(x-2\right)}\cdot\dfrac{1}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}=\dfrac{2x^2}{x^4+x^2+1}\)

b:

loading...

 

Bình luận (0)
NY
Xem chi tiết
LF
5 tháng 5 2017 lúc 20:27

\(D=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-\left(x+\dfrac{1}{4}\right)\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-x-\dfrac{1}{4}\right|\)

\(\ge x+\dfrac{1}{2}+0-x-\dfrac{1}{4}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(x=-\dfrac{1}{3}\)

Vậy với \(x=-\dfrac{1}{3}\) thì \(D_{Min}=\dfrac{1}{4}\)

Bình luận (0)
NM
5 tháng 5 2017 lúc 20:31

Ta có : | x + 1/2 | > hoặc = 0

| x + 1/3 | > hoặc = 0

| x + 1/4 | > hoặc = 0

=> D = | x + 1/2 | + | x + 1/3 | + | x + 1/4 | > hoặc = 0

Dấu " = " xảy ra khi D = 0

Vậy GTNN của biểu thức D là 0

Bình luận (0)
BB
Xem chi tiết
AH
17 tháng 2 2021 lúc 17:40

Bạn tham khảo lời giải tại đây:

Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x 2} \dfrac{x^2}{x^2-5x 6}\right):\dfrac{x^4 x^2 1}{x^2-4x 3}\) - Hoc24

Bình luận (0)