Những câu hỏi liên quan
LH
Xem chi tiết
TN
Xem chi tiết
PM
Xem chi tiết
NC
5 tháng 4 2018 lúc 21:19

Từ đề bài suy ra xy - x - y > 0

=> xy - x - y + 1 > 1

=> (x - 1)(y - 1) > 1 hiển nhiên vì x - 1 ; y - 1 > 1

=> đpcm

Bình luận (0)
MK
Xem chi tiết
MK
Xem chi tiết
AH
22 tháng 2 2020 lúc 17:52

Lời giải:

Vì $x,x+1$ là 2 số nguyên liên tiếp nên $x,x+1$ khác tính chẵn lẻ. Do đó trong 2 số $x,x+1$ tồn tại 1 số chẵn, 1 số lẻ

$\Rightarrow x(x+1)\vdots 2(1)$

Mặt khác:

Nếu $x,y$ cùng tính chẵn lẻ thì $x+y$ chẵn

$\Rightarrow x+y\vdots 2\Rightarrow xy(x+y)\vdots 2$

Nếu $x,y$ khác tính chẵn lẻ thì tồn tại 1 số chẵn, 1 số lẻ

$\Rightarrow xy\vdots 2\Rightarrow xy(x+y)\vdots 2$

Vậy tóm lại $xy(x+y)\vdots 2(2)$

Từ $(1);(2)\Rightarrow x(x+1)-xy(x+y)\vdots 2$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NL
8 tháng 5 2019 lúc 0:52

Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)

\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))

\(\Rightarrow x+y+z\ge3\)

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

//Hoặc cách khác sử dụng AM-GM:

\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);

\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế của 4 BĐT trên ta có:

\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
BM
Xem chi tiết
LH
28 tháng 10 2016 lúc 21:20

Vì \(\hept{\begin{cases}x>2\\y>2\end{cases}}\)

\(\Rightarrow\)Đặt \(x=2+m\)và \(y=2+n\)\(\left(m;n\in N\cdot\right)\)

\(\Rightarrow x+y=2+m+2+n=4+m+n\)

\(xy=\left(2+m\right)\left(2+n\right)=4+2n+2m+mn\)

\(=4+m+n+\left(m+n+mn\right)>4+m+n\)

\(\Rightarrow xy>x+y\)

Vậy ...

Bình luận (0)
CH
29 tháng 10 2016 lúc 21:04

Xét hiệu:2*(xy)-2*(x+y)

=2*xy-2x-2y

=(xy-2x)+xy-(2y)

=x*(y-2)+y*(x-2)

Vì x>2 nên x-2>0

y>2 nên y-2>0

=>x*(y-2)>0

và*(x-2)>0

=>x(y-2)+y*(x-2)>0=>2xy>2x+2y

=>2xy>2(x+y)

=>xy>x+y.

k mình nha!

Bài này là bài cuối của Đề thi 8 tuần ở Tam Điệp đúng không?

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết