Những câu hỏi liên quan
SL
Xem chi tiết
NT
30 tháng 1 2022 lúc 12:17

\(B=\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{30}{60}=\dfrac{1}{2}\)

\(C=\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}>\dfrac{1}{90}+\dfrac{1}{90}+...+\dfrac{1}{90}=\dfrac{30}{90}=\dfrac{1}{3}\)

Do đó: \(B+C>\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(đpcm)

Bình luận (0)
H24
Xem chi tiết
ND
11 tháng 8 2015 lúc 21:05

A = 1/31 + 1/32 + 1/33 + ... + 1/89 + 1/90 ..... 5/6

A = 5/6 = 1/2 + 1/3

Ta đặt : B = 1/31 + 1/32 + 1/33 + ... + 1/60 ( 30 phân số )

            C = 1/61 + 1/62 + 1/63 + .... + 1/90 ( 30 phân số )

Ta có : B = 1/31 + 1/32 + 1/33 + ... + 1/60 > 1/60 + 1/60 + 1/60 + ... + 1/60 = 30 x 1/60 = 1/2

           C = 1/61 + 1/62 + 1/63 + ... + 190 > 1/90 + 1/90 + 1/90 + .... + 1/90 = 30 x 1/90 = 1/3

Vì A = B + C > 1/2 + 1/3 = 5/6 nên 1/31 + 1/32 + 1/33 + .. + 1/89 + 1/90 > 5/6

Bình luận (0)
NT
11 tháng 7 2016 lúc 21:59

A=1/31+1/32+....+1/89+1/90>5/6 -vì dãy tổng A gồm 60 phân số mà phân số 1/60 nằm ở giữa (số tt 30) 
xét :1/59+1/61>2/60 (1/59+1/61=(59+61)/59*61=120/(60^2-1)>12... 
tương tự:1/58+1/62>2/60 
:1/57+1/63 >2/60 cứ như vậy có tới 29 cặp lẻ 1/90 và số 1/60 mà ta dùng so sánh 
do đó khi cộng vào ta được A.>59/60>50/60=5/6 đpcm

Bình luận (0)
NY
23 tháng 7 2017 lúc 15:43

sorry ! mk bó tay !

Bình luận (0)
PD
Xem chi tiết
NQ
18 tháng 8 2015 lúc 7:35

\(Q=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{90}\right)\)

\(Q>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+....+\frac{1}{90}\right)\)

\(=\frac{1}{60}.30+\frac{1}{90}.30=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy Q > 5/6

Bình luận (0)
HT
Xem chi tiết
TM
Xem chi tiết
HG
13 tháng 8 2015 lúc 22:13

Tổng trên có 60 số hạng nhóm 30 số vào 1 nhóm ta được:

1/31 + 1/32 + 1/33 +......+ 1/60 > 1/60 . 30 = 1/2

1/61 + 1/62 + 1/63 +......+ 1/90 > 1/90 . 30 = 1/3

=> 1/31 + 1/32 + 1/33 +.......+ 1/90 > 1/2 + 1/3

=> 1/31 + 1/32 + 1/33 +.....+ 1/90 > 5/6

Bình luận (0)
DN
Xem chi tiết
XO
2 tháng 9 2020 lúc 15:28

Ta có :\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{90}\right)\)

                   60 số hạng                                                              30 số hạng                                     30 số hạng

\(>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\right)=30.\frac{1}{60}+30.\frac{1}{90}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}>\frac{5}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
.
2 tháng 9 2020 lúc 15:28

Ta có: \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)

Lại có: \(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}>\frac{5}{6}\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
CN
Xem chi tiết
SG
17 tháng 7 2016 lúc 15:18

1/31 + 1/32 + 1/33 + ... + 1/90 

= (1/31 + 1/32 + ... + 1/60) + (1/61 + 1/62 + ... + 1/90)

> 1/60 × 30 + 1/90 × 30

> 1/2 + 1/3

> 5/6

Bình luận (0)
DH
Xem chi tiết
ON
24 tháng 6 2019 lúc 17:53

(không ghi cách giải)

đáp án : a > 5/6

chúc bn

hok tốt

Bình luận (0)
OC
24 tháng 6 2019 lúc 18:41

(ko ghi đề)

đáp án : a > 5 / 6

chúc b

hk tốt

Bình luận (0)