Những câu hỏi liên quan
KY
Xem chi tiết
KY
10 tháng 5 2016 lúc 10:44

giúp mk đi!

Bình luận (0)
CT
10 tháng 5 2016 lúc 11:06

the ma van duoc k

Bình luận (0)
NV
10 tháng 5 2016 lúc 11:09

VAY BAN GIAI DC KO

Bình luận (0)
HH
Xem chi tiết
CD
Xem chi tiết
CD
28 tháng 2 2020 lúc 14:25

ừmmmmmmm......bài cô giảng rùi đó ông tướng ạ!!!! giở lại xem đi.......

Giả sử f(x)=ax^2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra

f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b

Mà f(x)−f(x−1)=x

⇒2ax+a+b=x

Do đó a+b=0 và a=1/2 từ đó ta suy ra a=1/2;b=−1/2

Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)

f(n)=1+2+3+...+n

Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1

f(2)−f(1)=2

....

f(n)−f(n−1)=n

Do đó

1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=n(n−1)2

Bình luận (0)
 Khách vãng lai đã xóa
IN
29 tháng 2 2020 lúc 21:43

Ta có:\(f\left(x\right)-f\left(x-1\right)=x\)

Gọi đa thức bậc hai có dạng \(f\left(x\right)=ax^2+bx+c\)

\(\implies\)\(f\left(x-1\right)=a.\left(x-1\right)^2+b.\left(x-1\right)+c\)

\(\implies\) \(f\left(x\right)-f\left(x-1\right)=\left(ax^2+bx+c\right)-\left(a.\left(x-1\right)^2+b.\left(x-1\right)+c\right)\)

                                             \(=\left(ax^2+bx+c\right)-\left(ax^2-2ax+a+bx-b+c\right)\)

                                             \(=ax^2+bx+c-ax^2+2ax-a-bx+b-c\)

                                             \(=2ax-a+b\)

Theo bài ra ta có:\(f\left(x\right)-f\left(x-1\right)=x\)

                \(\implies\)  \(2ax+\left(-a+b\right)=x\)

Đồng nhất các hệ số ta được :\(\hept{\begin{cases}2a=1\\-a+b=0\end{cases}}\) \(\implies\)  \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}\)

Vậy đa thức bậc hai có dạng :

        \(f\left(x\right)=\frac{1}{2}x^2+\frac{1}{2}x+c\)

\(\implies\) \(f\left(x\right)=\frac{x.\left(x+1\right)}{2}+c\)

Vận dụng: \(S=1+2+3+...+n\)

 Ta có :\(f\left(1\right)-f\left(0\right)=1\)

           \(f\left(2\right)-f\left(1\right)=2\)

          \(f\left(3\right)-f\left(2\right)=3\)

                 .......................

        \(f\left(n\right)-f\left(n-1\right)=n\)

\(\implies\) \(f\left(1\right)-f\left(0\right)+f\left(2\right)-f\left(1\right)+f\left(3\right)-f\left(2\right)+....+f\left(n\right)-f\left(n-1\right)=1+2+3+...+n\)

\(\implies\) \(f\left(n\right)-f\left(0\right)=S\)

\(\implies\) \(\left(\frac{n.\left(n+1\right)}{2}+c\right)-\left(\frac{0.\left(0+1\right)}{2}+c\right)=S\)

\(\implies\) \(\frac{n.\left(n+1\right)}{2}+c-0-c=S\)

\(\implies\) \(S=\frac{n.\left(n+1\right)}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
TL
2 tháng 10 2015 lúc 1:17

f(x) là đa thức bậc hai nên đặt f(x) = ax+ bx + c

=> f(x - 1) = a(x - 1)+ b(x - 1) + c 

=> f(x) - f(x - 1) = a.[x- (x - 1)2] + b[x - (x - 1)] = a.(2x - 1) + b = 2ax + (b - a) 

Để f(x) - f(x - 1) = x thì 2ax + (b - a) = x <=> 2a = 1 và b - a = 0 => a = b = 1/2. Chọn c tùy ý

Chọn c = 0 , Vậy đa thức f(x) = \(\frac{x^2+x}{2}=\frac{x\left(x+1\right)}{2}\)

Áp dụng tính S: Đặt f(n) = \(\frac{n\left(n+1\right)}{2}\) ta có: 

1 = f(1) - f(0); 2= f(2) - f(1); ...; n = f(n) - f(n - 1)

=> S = 1 + 2 + ...+ n = f(1) - f(0) + f(2) - f(1) + ...+ f(n) - f(n - 1) = [f(1) + f(2) + ....+ f(n)] - [f(0) + f(1) + ...+ f(n-1)]

S = f(n) - f(0) = \(\frac{n\left(n+1\right)}{2}\)

Vậy.............

 

Bình luận (0)
H24
1 tháng 10 2015 lúc 21:14

xét f(x)=ax^2 cộg bx cộg c 
f(x)-f(x-1)=x 
<=>2ax-(a-b)=x 
vì phân tích trên là duy nhất suy ra a=b=1/2 
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số) 
cho x=0,1,2,...n rồi cộng lại ta đc: 
f(n)-f(0)=1 cộng 2 cộng...cộg n 
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n. 

lưu ý:từ bài này ta có thể suy ra cách tính tổng của một số dãy số. 

Bình luận (0)
TA
21 tháng 2 2017 lúc 20:51

dung roi

Bình luận (0)
VN
Xem chi tiết
QH
30 tháng 3 2018 lúc 19:01

f(x)=ax^2+bx+c

=>f(x-1)=a(x-1)^2 +b(x-1)+c

=a(x-1)(x-1)+b(x-10)+c

=(ax-a)(x-1)+bx+b+c=(ax-a)x-1(ax-a)+bx+b+c

=ax^2-ax-ax+a+bx+b+c

=ax^2-2ax+a+bx+b+c

=>f(x)-f(x-1)=(ax^2+bx+c)-(ax^2-2ax+a+bx+b+c)

=2ax+a+b=x

mà f(x)=f(x-1)=x

<=>2ax+a+b=x+0

<=>2a=1=>a=1/2

      a+b=0=>b=-1/2

=>Đa thức có dạng 1/2x^2-1/2x+c

=>1=f(1)-f(0)

    2=f(2)-f(1)

    3=f(3)-(2) 

n=f(n)-f(n-1)

=>S=f(n)-f(0)

NẾU THẤY ĐÚNG THÌ K CHO MK NHA BN!

Bình luận (0)
NH
30 tháng 3 2018 lúc 18:56

Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra

f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b

Mà f(x)−f(x−1)=xf(x)−f(x−1)=x

⇒2ax+a+b=x⇒2ax+a+b=x

Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2

Do đó f(x)=x22−x2+cf(x)=x22−x2+c

f(n)=1+2+3+...+nf(n)=1+2+3+...+n

Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1

f(2)−f(1)=2f(2)−f(1)=2

....

f(n)−f(n−1)=nf(n)−f(n−1)=n

Do đó

1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2

Bình luận (0)
CY
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
PL
10 tháng 8 2016 lúc 18:11

Toán lớp 8

Bình luận (1)
LH
10 tháng 8 2016 lúc 18:10

Câu hỏi của Bui Cam Lan Bui - Toán lớp 8 - Học toán với OnlineMath

Bình luận (1)
H24
Xem chi tiết
HP
Xem chi tiết