Những câu hỏi liên quan
TD
Xem chi tiết
SK
Xem chi tiết
NH
20 tháng 5 2017 lúc 9:38

Phương pháp tọa độ trong mặt phẳng

Bình luận (0)
SK
Xem chi tiết
DM
30 tháng 3 2017 lúc 16:55

Phương trình chính tắc của elip có dạng: + = 1

a) Elip đi qua M(0; 3):

+ = 1 => b2 = 9

Elip đi qua N( 3; ):

+ = 1 => a2 = 25

Phương trình chính tắc của elip là : + = 1

b) Ta có: c = √3 => c2 = 3

Elip đi qua điểm M(1; )

+ = 1 => + = 1 (1)

Mặt khác: c2 = a2 – b2

=> 3 = a2 – b2 => a2 = b2 + 3

Thế vào (1) ta được : + = 1

<=> a2 = 4b2 + 5b2 – 9 = 0 => b2= 1; b2 = ( loại)

Với b2= 1 => a2 = 4

Phương trình chính tắc của elip là : + = 1.

Bình luận (0)
CL
13 tháng 4 2017 lúc 21:24

Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

Bình luận (0)
TD
Xem chi tiết
XO
20 tháng 4 2023 lúc 21:18

Theo đề ra ta có hệ : 

 \(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy (a,b) = (2,1) 

Bình luận (0)
SK
Xem chi tiết
H24
31 tháng 5 2017 lúc 10:49

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.

Bình luận (0)
TD
Xem chi tiết
PT
21 tháng 4 2023 lúc 21:25

+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )

+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)

=> vậy a =2 b =1 

học tốt ! :)))

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 22:54

Elip có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\)

Do Elip đi qua điểm M(0;3) nên \(b = 3\)

Điểm \(N\left( {3; - \frac{{12}}{5}} \right)\) thuộc (E) nên ta có: \(\frac{{{3^2}}}{{{a^2}}} + \frac{{{{\left( { - \frac{{12}}{5}} \right)}^2}}}{{{3^2}}} = 1 \Leftrightarrow a = 5\)

Vậy Elip có phương trình chính tắc là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

Bình luận (0)
SK
Xem chi tiết
LH
9 tháng 4 2017 lúc 22:40

a, Phương trình chính tắc của (E) có dạng

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a

Ta có A(0;2) \(\in\left(E\right)\)<=>b=2

(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)

Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3

==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)

c, S=4ab=24

Bình luận (0)
HO
Xem chi tiết