hộ mk rút gọn cái này nha 4*cos(a-b)*cos(b-c)*cos(c-a)
rút gọn hộ biểu thứcnày vs 4.cos(a-b).cos(b-c).cos(c-a)
Rút gọn biểu thức \(M = \cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\), ta được
A. \(M = \sin 4a\)
B. \(M = 1 - 2{\cos ^2}a\)
C. \(M = 1 - 2{\sin ^2}a\)
D. \(M = \cos 4a\)
\(\cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\)
\( = \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) + \cos \left( {a + b + a - b} \right)} \right] - \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) - \cos \left( {a + b + a - b} \right)} \right]\)
\( = \frac{1}{2}\left( {\cos 2b + \cos 2a - \cos 2b + \cos 2a} \right) = \frac{1}{2}.2\cos 2a = \cos 2a = 1 - 2{\sin ^2}a\)
Vậy chọn đáp án C
1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)
1.
\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)
\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)
\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)
\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)
\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)
\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)
\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)
\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)
2.
\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)
\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)
\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)
\(=cos3x\)
\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)
\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)
\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)
\(=tan^2a.cot^2b-2\)
3.
\(\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\Leftrightarrow2sina.cos\left(a+b\right)=cosa.sin\left(a+b\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right)sina\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sinb\)
b.
\(\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\Leftrightarrow2sina.cos\left(a+b\right)=cosa.sin\left(a+b\right)\)
\(\Leftrightarrow sin\left(2a+b\right)+sin\left(-b\right)=\dfrac{1}{2}sin\left(2a+b\right)+\dfrac{1}{2}sinb\)
\(\Leftrightarrow\dfrac{1}{2}sin\left(2a+b\right)=\dfrac{3}{2}sinb\)
\(\Leftrightarrow sin\left(2a+b\right)=3sinb\)
Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:
\(\cos \left( {a + b} \right) + \cos \left( {a - b} \right);\,\,\cos \left( {a + b} \right) - \cos \left( {a - b} \right);\,\,\sin \left( {a + b} \right) + \sin \left( {a - b} \right)\)
\(\begin{array}{l}\cos \left( {a + b} \right) + \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b + \sin a.\sin b + \cos a.\cos b = 2\cos a.\cos b\\\cos \left( {a + b} \right) - \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b - \sin a.\sin b - \cos a.\cos b = - 2\sin a.\sin b\\\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b + \sin a.\cos b - \cos a.\sin b = 2\sin a.\cos b\end{array}\)
Rút gọn các biểu thức:
a) $\sin 40^\circ - \cos 50^\circ$.
b) $\sin^2 30^\circ + \sin^2 40 ^\circ + \sin^2 50^\circ + \sin^2 60^\circ$.
c) $\cos^2 10^\circ - \cos^2 20^\circ + \cos^2 30^\circ - \cos^2 40 ^\circ - \cos^2 50^\circ - \cos^2 70^\circ + \cos^2 80^\circ$.
a) sin 40 - cos 50 =0
b) sin230 + sin240 + sin250 + sin260 = 2
c) cos210 - cos220 + cos230 - cos240 - cos250 - cos270 + cos280 = - sin230
\(a.sin40^o-cos50^o=sin40^o-sin40^o=0\)
\(b.sin^230^o+sin^240^o+sin^250^o+sin^260^o=\left(sin^230^0+sin^260^o\right)+\left(sin^240^0+sin^250^o\right)=\left(sin^230^0+cos^230^o\right)+\left(sin^240+cos^240^o\right)=1+1=2\)
\(c.\left(cos^210^o+cos^280^o\right)-\left(cos^220^o+cos^270^0\right)-\left(cos^240^o-cos^250^o\right)+cos^230^o=\left(cos^210^o+sin^210^o\right)-\left(cos^220^o+sin^220^o\right)-\left(cos^240^o+sin^240^0\right)+cos^230^0=1-1-1+\dfrac{3}{4}=-\dfrac{1}{4}\)
a) 0
b)2
c)3/4-1
rút gọn C=\(\dfrac{cos2a-sin\left(b-a\right)}{2cosa.cosb-cos\left(a-b\right)}\)
Cho A, B, C là 3 góc của tam giác. Rút gọn M=cos(2A+B+C)
cho \(\alpha\)là góc nhọn. Rút gọn biểu thức \(A=sin^6\alpha+3sin^2\alpha-cos^2\alpha^{ }\)
cho \(\tan\alpha+\cos\alpha=3\). Tính \(A=\sin\alpha\times\cos\alpha\)
(\(\alpha\)là alpha nha m.n)
giải hộ mk vs ạ !! gấp lắm
Rút gọn các biểu thức:
a)\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)\
b) \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(sin^4a+cos^4a+2sin^2a.cos^2a=\left(sin^2a+cos^2a\right)^2=1^2=1\)
b) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2a.cos^2a+cos^4a\right)+3sin^2a.cos^2a=sin^4a+2sin^2a.cos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)