Những câu hỏi liên quan
TT
Xem chi tiết
GD

Bài 1:

\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)

Bình luận (0)
NT
22 tháng 7 2023 lúc 10:21

2:

a: =-(x^2-3x+1)

=-(x^2-3x+9/4-5/4)

=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn

b: =-2(x^2+3/2x+3/2)

=-2(x^2+2*x*3/4+9/16+15/16)

=-2(x+3/4)^2-15/8<0 với mọi x

Bình luận (0)
GD

Bài 1:

\(B=4+x^2+x=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\\ Vậy:B>0\forall x\in R\)

Bình luận (0)
NL
Xem chi tiết
MT
9 tháng 6 2015 lúc 20:26

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y

Bình luận (0)
LP
Xem chi tiết
LL
21 tháng 9 2021 lúc 20:58

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)

Bình luận (1)
NL
Xem chi tiết
AV
6 tháng 9 2017 lúc 0:51

Bài 1:

Ta có:

VT=\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)

=\(a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

=\(\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)

=\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\) = VP

Vậy đẳng thức được chứng minh

Bài 2:

a/P=\(x^2-2x+5\)

=\(\left(x^2-2x+1\right)+4\)

=\(\left(x-1\right)^2+4\)

\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow P\ge4\forall x\)

Vậy GTNN của P là 4 khi \(\left(x-1\right)^2=0\) hay x=1

b/Q=\(2x^2-6x\)

=\(2\left(x^2-3x\right)\)

=\(2\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

=\(2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)

\(\Rightarrow Q\ge-\dfrac{9}{2}\forall x\)

Vậy GTNN của Q là \(-\dfrac{9}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\) hay \(x=\dfrac{3}{2}\)

c/\(M=x^2+y^2-x+6y+10\)

=\(x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)

=\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

\(\Rightarrow M\ge\dfrac{3}{4}\forall x,y\)

Vậy GTNN của M là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\)\(\left(y+3\right)^2=0\) hay \(x=\dfrac{1}{2}\) và y = -3

Bài 3:

a/Đặt A=\(x^2-6x+10\)

A=\(x^2-6x+9+1=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

\(\Rightarrow A>0\forall x\)

\(\Rightarrow x^2-6x+10>0\forall x\)

b/Đặt B=\(4x-x^2-5\)

B=\(-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

\(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)

\(\Rightarrow B< 0\forall x\)

\(\Rightarrow4x-x^2-5< 0\forall x\)

Bình luận (2)
B1
Xem chi tiết
NL
Xem chi tiết
NL
30 tháng 8 2017 lúc 12:59

x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1 
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x) 
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1] 
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0 
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7] 
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7 
Vay GTLN A=7 khi x=2 
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4] 
GTLN B= 1/4 khi x=1/2 
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4) 
= -2[(x-1/2)^2 +9/4] 
GTLN N= -9/2 khi x=1/2

Bình luận (0)
TT
Xem chi tiết
EC
15 tháng 8 2016 lúc 18:33

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

Bình luận (0)
HN
15 tháng 8 2016 lúc 18:31

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

Bình luận (0)
LF
15 tháng 8 2016 lúc 18:38

a)x2-6x+10

=x2-6x+9+1

=(x-3)2+1

Ta thấy:\(\left(x-3\right)\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+1>0\) với mọi x

b)4x-x2-5

=-(x2-4x+5)

=-(x-4x+4+1)

=-(x-2)2-1

Ta thấy:\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Bình luận (0)
NH
Xem chi tiết
KN
28 tháng 6 2019 lúc 6:35

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

Bình luận (0)
NA
28 tháng 6 2019 lúc 10:42

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

Bình luận (0)
QN
Xem chi tiết
H24
12 tháng 9 2017 lúc 17:10

Giải:

a) \(x^2-6x+10\)

\(=x^2+6x+9+1\)

\(=\left(x+3\right)^2+1\)

\(\left(x+3\right)^2\ge0\forall x\)

Nên \(\left(x+3\right)^2+1\ge1\forall x\)

Vậy \(\left(x+3\right)^2+1>0\forall x\).

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x+2\right)^2-1\)

\(-\left(x-2\right)^2\le0\forall x\)

Nên \(-\left(x+2\right)^2-1\le-1\forall x\)

Vậy \(-\left(x+2\right)^2-1< 0\forall x\).

Chúc bạn học tốt!

Bình luận (0)
TL
12 tháng 9 2017 lúc 17:20

\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)

\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)

Bình luận (0)