đưa thừa số ra ngoài dấu căn :
\(\sqrt{18b^3\left(1-2a\right)^2}\)( a≥\(\dfrac{1}{2}\); b ≥0)
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
a. Tìm giá trị của $x$ sao cho biểu thức $A = x - 1$ có giá trị dương.
b. Đưa thừa số ra ngoài dấu căn, tính giá trị biểu thức $B = 2\sqrt{2^2.5} - 3\sqrt{3^2.5} + 4\sqrt{4^2.5}$.
c. Rút gọn biểu thức $C = \left(\dfrac{1-a\sqrt a}{1-\sqrt a} + \sqrt a\right) \left(\dfrac{1-\sqrt a}{1-a}\right)^2 $ với $a \ge 0$ và $a \ne 1$.
a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)
b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)
\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)
( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))
c, Với \(a\ge0;a\ne1\)
\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)
\(\sqrt{48.45}\) Đưa thừa số ra ngoài dấu căn:
\(\sqrt{225.17}\)
\(\sqrt{a^3b^7}với\) \(a\ge0;b\ge0\)
\(\sqrt{x^5\left(x-3\right)^2}\) với \(x>0\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
đưa thừa số ra ngoài dấu căn :
a) a2\(\sqrt{\dfrac{2}{3a}}\)( a > 0 )
b) \(\dfrac{x-3}{x}\)\(\sqrt{\dfrac{x^3}{9-x^2}}\)(0<x<3)
a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)
b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)
\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)
Đưa thừa số ra ngoài dấu căn: \(\frac{1}{x-y}\sqrt{x^4\left(x^2+y^2-2xy\right)}\) (x<y)
\(\frac{1}{x-y}.\sqrt{x^4\left(x^2+y^2-2xy\right)}\)
\(=\frac{1}{x-y}.\sqrt{\left(x^2\right)^2.\left(x-y\right)^2}\)
\(=\frac{1}{x-y}\left(x-y\right)x^2\)
\(=x^2\)
đưa thừa số ra ngoài dấu căn:
a) \(-\sqrt{10x^2y\times\left(3-\sqrt{2^2}\right)}\)
b) \(\sqrt{3x^2-6xy+3y^2}\)
a,\(-\sqrt{10x^2\cdot y\left(3-\sqrt{2}\right)^2}=-\left|x\right|\) \(\cdot\left(3-\sqrt{2}\right)\cdot\sqrt{10y}\)
xet th \(x\ge0\) ta co \(-x\cdot\left(3-\sqrt{2}\right)\sqrt{10y}\)
xet th \(x< 0\) ta có \(x\left(3-\sqrt{2}\right)\sqrt{10y}\)
b,\(\sqrt{3\left(x^2-2xy+y^2\right)}=\) \(\sqrt{3\cdot\left(x-y\right)^2}=\left|x-y\right|\sqrt{3}\)
đưa thừa số ra ngoài dấu căn của những biểu thức sau
a. \(\sqrt{27\left(9-4\sqrt{5}\right)}\)
b.\(\sqrt{a^4b^5}\)
c. \(\sqrt{a^3\left(1-a\right)^4}\) (a>1)
d. \(\sqrt{\dfrac{1}{a}-\dfrac{1}{a^2}}\left(a>1\right)\)
a) \(\sqrt{27\left(9-4\sqrt{5}\right)}=3\sqrt{3\left(\sqrt{5}-2\right)^2}=3\sqrt{3}\left(\sqrt{5}-2\right)=3\sqrt{15}-6\sqrt{3}\)
b) \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)
c) \(\sqrt{a^3\left(1-a\right)^4}=a\left(1-a\right)^2\sqrt{a}\)
d) không biết
Đưa một thừa số vào trong dấu căn: \(x\sqrt{\dfrac{2}{x}}\left(x>0\right)\); \(x\sqrt{\dfrac{2}{5}}\); \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\); \(x\sqrt{\dfrac{7}{x^2}}\)
\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2\cdot\dfrac{2}{x}}=\sqrt{2x}\)
\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2}{5}\cdot x^2}=\sqrt{\dfrac{2x^2}{5}}\)
\(\left(x-5\right)\cdot\sqrt{\dfrac{x}{25-x^2}}=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{-\left(x-5\right)\left(x+5\right)}}=\sqrt{-\dfrac{x\left(x-5\right)}{x+5}}\)
\(x\sqrt{\dfrac{7}{x^2}}=\sqrt{x^2\cdot\dfrac{7}{x^2}}=\sqrt{7}\)
1. Chứng minh rằng: \(\frac{2x^2+1}{\sqrt{4x^2+1}}\ge1\)
2. Tìm GTLN: A=\(\frac{1}{x-\sqrt{x}+1}\left(x>0\right)\)
3. Đưa thừa số ra ngoài dấu căn
B= \(\frac{1}{2x-1}\sqrt{5\left(1-4x+4x^2\right)}\)