Những câu hỏi liên quan
H24
Xem chi tiết
H24
8 tháng 5 2018 lúc 20:50

Đặt \(a=\frac{9+3\sqrt{17}}{4}\) và  \(b=\frac{3+\sqrt{17}}{4}\)khi đó \(a=3b\)và  \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta thu được các BĐT sau:  \(x^2+b^2y^2\ge2bxy\)

                                                                         \(by^2+z^2\ge2byz\)

                                                                         \(a\left(z^2+x^2\right)\ge2azx\)

Cộng các vế theo các vế các BĐT thu được để có: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

Hay \(c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Từ đó ta thay các giá trị của \(xy+yz+3zx\); b và c để có được

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

Cuối cùng, với \(x=z=\frac{1}{\sqrt[4]{17}}\)và \(y=\sqrt{\frac{13\sqrt{17}-51}{34}}\)( Thỏa mãn giả thiết )  thì \(P=\frac{\sqrt{17}-3}{2}\)

Nên ta kết luận \(\frac{\sqrt{17}-3}{2}\)là giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2\)

Bình luận (0)
H24
Xem chi tiết
PK
8 tháng 7 2018 lúc 8:56

Đặt \(a=\frac{9+3\sqrt{17}}{4};b=\frac{3+\sqrt{17}}{4}\Rightarrow a=3b\) và \(a+1=2b^2=c=\frac{13+3\sqrt{17}}{4}\)

Áp dụng BĐT AM-GM ta có: 

\(x^2+b^2y^2\ge2bxy\)

\(by^2+z^2\ge2byz\)

\(a\left(z^2+x^2\right)\ge2azx\)

Cộng vế theo vế của các BĐT ta được: 

\(\left(a+1\right)\left(x^2+z^2\right)+2b^2y^2\ge2b\left(xy+yz\right)+2azx\)

\(\Rightarrow c\left(x^2+y^2+z^2\right)\ge2b\left(xy+yz+3zx\right)\). Tiếp tục thay các giá trị của \(xy+yz+3zx\)vào b và c để được: 

\(P=x^2+y^2+z^2\ge\frac{\sqrt{17}-3}{2}\)

\(\Rightarrow x=z=\frac{1}{\sqrt[4]{17}};y=\sqrt{\frac{13-\sqrt{17}-51}{34}}\left(TMĐK\right)\)

\(\Rightarrow P=\frac{\sqrt{17}-3}{2}\)là GTNN của biểu thức P ( đpcm )

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 12 2021 lúc 23:59

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

Bình luận (2)
PN
Xem chi tiết
PT
Xem chi tiết
TA
Xem chi tiết
NC
Xem chi tiết
NC
27 tháng 11 2019 lúc 19:33

sai đè nha:4\(\sqrt{yz}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
27 tháng 11 2019 lúc 19:37

cây gì lớn nhất hành tinh

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết