Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HD
Xem chi tiết
PN
Xem chi tiết
NL
7 tháng 6 2020 lúc 14:10

\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{9\left(x^2-2x+2\right)-5x^2+20x-20}{2\left(x^2-2x+2\right)}=\frac{9}{2}-\frac{5\left(x-2\right)^2}{2\left(x-1\right)^2+2}\le\frac{9}{2}\)

\(C_{max}=\frac{9}{2}\) khi \(x=2\)

\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{-\left(x^2-2x+2\right)+5x^2}{2\left(x^2-2x+2\right)}=-\frac{1}{2}+\frac{5x^2}{2\left(x-1\right)^2+2}\ge-\frac{1}{2}\)

\(C_{min}=-\frac{1}{2}\) khi \(x=0\)

Câu D bạn coi lại đềm kết quả rất xấu: \(\frac{3-\sqrt{17}}{12}\le D\le\frac{3+\sqrt{17}}{12}\)

Bình luận (0)
RK
Xem chi tiết
CA
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Bình luận (0)
UN
Xem chi tiết
DH
Xem chi tiết
H24
31 tháng 8 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
NN
Xem chi tiết
VC
Xem chi tiết
OO
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
NC
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Bình luận (0)
BN
Xem chi tiết
DH
Xem chi tiết
FF
13 tháng 8 2016 lúc 13:56

1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2]) 
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα 
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2 
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3. 
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị. 

2. Đặt x = cosα và y = sinα (với α trên [0,3π/2]) 
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α) 
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1. 
Ta áp dụng P' = 0 tiếp.

Bình luận (0)