Những câu hỏi liên quan
LA
Xem chi tiết
LM
Xem chi tiết
KA
12 tháng 7 2020 lúc 17:19

Trả lời:

\(\frac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\frac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)

\(=\frac{\sqrt{2}.\sqrt{5}.\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-\frac{6}{\sqrt{10}-2}+\sqrt{63+12\sqrt{7}+4}\)

\(=\sqrt{2}.\sqrt{5}-\frac{6.\left(\sqrt{10}+2\right)}{10-4}+\sqrt{\left(3\sqrt{7}+2\right)^2}\)

\(=\sqrt{10}-\sqrt{10}-2+3\sqrt{7}+2\)

\(=3\sqrt{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
TB
22 tháng 8 2021 lúc 11:20

undefined

Bình luận (0)
H24
22 tháng 8 2021 lúc 11:26

a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)

=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)

check giùm mik

 

Bình luận (0)
NT
22 tháng 8 2021 lúc 13:43

a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{x-4}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b: Thay \(x=7+4\sqrt{3}\) vào P, ta được:

\(P=\dfrac{2+\sqrt{3}+2}{\sqrt{3}\left(2+\sqrt{3}\right)}=\dfrac{-6+5\sqrt{3}}{3}\)

 

Bình luận (0)
LM
Xem chi tiết
KA
29 tháng 7 2020 lúc 18:39

Trả lời:

\(\frac{2}{\sqrt{5}+\sqrt{3}}-\sqrt{\frac{2}{4-\sqrt{15}}}+6\sqrt{\frac{1}{3}}\)

\(=\frac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}-\sqrt{\frac{2\times2}{2\times\left(4-\sqrt{15}\right)}}+6\times\frac{1}{\sqrt{3}}\)

\(=\frac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}-\sqrt{\frac{4}{8-2\sqrt{15}}}+6\times\frac{\sqrt{3}}{3}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{\frac{4}{5-2\sqrt{15}+3}}+2\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{\frac{4}{\left(\sqrt{5}-\sqrt{3}\right)^2}}+2\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}-\frac{2}{\sqrt{5}-\sqrt{3}}+2\sqrt{3}\)

\(=\sqrt{5}+\sqrt{3}-\frac{2}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{3}\right).\left(\sqrt{5}+3\right)-2}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{5-3-2}{\sqrt{5}-\sqrt{3}}\)

\(=0\)

Học tốt 

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
VT
24 tháng 7 2020 lúc 16:11

-2.6314...

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
LM
Xem chi tiết
KN
12 tháng 7 2020 lúc 16:38

\(\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{9+6\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}=\left(\sqrt{5}-2\right)-\left(3+\sqrt{5}\right)=-5\)

Bình luận (0)
 Khách vãng lai đã xóa
KA
12 tháng 7 2020 lúc 18:45

Trả lời: 

\(\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)

\(=\sqrt{5-4\sqrt{5}+4}-\sqrt{9+6\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)

\(=\sqrt{5}-2-3-\sqrt{5}\)

\(=-5\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TT
Xem chi tiết
NL
6 tháng 3 2020 lúc 19:54

\(=\frac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=\frac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)

\(=\frac{15}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)

\(=\frac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)

\(=60+15\sqrt{15}-15\sqrt{15}=60\)

Bình luận (0)
 Khách vãng lai đã xóa