Những câu hỏi liên quan
HN
Xem chi tiết
HB
24 tháng 4 2021 lúc 23:08

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

Bình luận (2)
BN
Xem chi tiết
OO
29 tháng 7 2016 lúc 8:21

đổi pt thành : y^2 - (x^2)y + x^4 -81001 = 0 
Lập denta của pt ẩn y ta được denta bằng : 324004 - 3 x^4. 
Để pt có nghiệm y thì denta lớn hơn hoặc bằng 0 
Từ đó suy ra 18 >= x >= -18 

t i c k nhé!! 436565667676879867856735623626356562442516576678768987978

Bình luận (0)
NQ
Xem chi tiết
NM
Xem chi tiết
NB
Xem chi tiết
EG
Xem chi tiết
LT
Xem chi tiết
NL
23 tháng 1 2024 lúc 21:17

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=5\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=5\)

\(\Leftrightarrow\left(x-2y\right)^2=5-\left(y-3\right)^2\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow5-\left(y-3\right)^2\ge0\Rightarrow\left(y-3\right)^2\le5\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-3\right)^2=0\\\left(y-3\right)^2=1\\\left(y-3\right)^2=4\end{matrix}\right.\)

Thay vào (1):

- Với \(\left(y-3\right)^2=0\)  \(\Rightarrow\left(x-2y\right)^2=5\) vô nghiệm do 5 ko phải SCP

- Với \(\left(y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\)

\(y=4\Rightarrow\left(x-8\right)^2=4\Rightarrow\left[{}\begin{matrix}x=10\\x=6\end{matrix}\right.\)

\(y=2\Rightarrow\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

- Với \(\left(y-3\right)^2=4\Rightarrow\left[{}\begin{matrix}y=5\\y=1\end{matrix}\right.\)

\(y=5\Rightarrow\left(x-10\right)^2=1\Rightarrow\left[{}\begin{matrix}x=11\\x=9\end{matrix}\right.\)

\(y=1\Rightarrow\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Em tự kết luận các cặp nghiệm

Bình luận (1)
NL
23 tháng 1 2024 lúc 20:58

Chắc phải là cặp số nguyên chứ có vô số cặp x;y bất kì thỏa mãn pt này

Bình luận (1)
LP
4 tháng 1 lúc 14:17

dễ mà

Bình luận (0)
LY
Xem chi tiết
VP
13 tháng 2 2020 lúc 11:59

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

Xét \(m=0\) , hệ pt tương đương:

\(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\Rightarrow x+y=0\left(\text{loại}\right)\)

\(\Rightarrow m\ne0\)

Hệ pt có nghiệm duy nhất khi:

\(\frac{1}{m}\ne m\Leftrightarrow m\ne\pm1\)

Hệ pt tương đương:

\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=\left(m-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3m+1}{m+1}\\y=\frac{m-1}{m+1}\end{matrix}\right.\)

\(\Rightarrow x+y=\frac{4m}{m+1}\)

\(x+y< 0\Leftrightarrow\frac{4m}{m+1}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4m>0\\m+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}4m< 0\\m+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)

Vậy để hệ phương trình có nghiệm duy nhất \(\left(x;y\right)\) thỏa mãn \(x+y< 0\) thì \(m>0;m< -1;m\ne1\)

Bình luận (0)
 Khách vãng lai đã xóa
EG
Xem chi tiết