SO SANH A VA B
A=2^0+2^1+2^2+.......+2^9
B=2^11
so sanh
a,2^160 va 4^120; b,2^91 va 5^35; c,A=2^0+2^1+2^2+...+2^12 va B=2^11
Cho A= 1+2+2^2+2^3+.....+2^10. So sanh A va 2^11
2A=2+2^2+...+2^11
A=2A-A=2^11-1
=>A<2^11
2A=2+22+23+...+210+211
2A-A=211-1
A=211-1
=>A<211
tick mk nha
Cho A=1+2+2^2+2^3+.....+2^11
Không tinh tổng A,hãy chứng tỏ A chia hết cho 3
bai 2 so sanh
A=2^0+2^1+2^2+2^3+......+2^2010 va B=2^2011-1
tim cac so tu nhien a,b,c sao cho a nho nhat thoa man 7a^2 - 9b^2 +29 = 0 va 9b^2 -11c^2 -25 = 0
So sanh : .A=2^0+2^1+2^2+2^3+...+2^2010 va` B=2^2011-1.
Có A=20+21+22+23+24+.....+22010
Nên 2A = 2 (20+21+22+23+24+.....+22010 )
= 21+22+23+24+.....+22011 + 22011
=>A = 2A - A = 22011 - 20
= 22011 - 1
= B
Vậy A = B
So sanh A va B
A=-1/2011-3/11^2-5/11^3-7/11^4
B=-1/2011-7/11^2-5/11^3-3/11^4
cho a;b e Z va b>0 ; so sanh 2 so huu ti a/b va a+1/b+1
\(\frac{a}{b}=\frac{ab+a}{b^2+b};\frac{a+1}{b+1}=\frac{ab+b}{b^2+b}\)
\(+,a>b\Rightarrow ab+a>ab+b\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\left(vì:b>0\right)\)
\(+,a=b\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(+,a< b\Rightarrow ab+a< ab+b\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\left(vì:b>0\right)\)
\(Vậy:voi:a>b\text{ thì }\frac{a}{b}>\frac{a+1}{b+1};voi:a=b\text{ thì: }\frac{a}{b}=\frac{a+1}{b+1}=1;voi:a< b\text{ thì:}\frac{a}{b}< \frac{a+1}{b+1}\)
b)cho A=2^0 +2^1+2^2+...+2^30
B= 2^31-1
So sanh A va B
c)cho A=2^0+2^1+2^2+...+2^100
Biết A+1=2^x.Tìm x
b) A = 20 +21 +22+...+230
=> 2A = 21 +22+23+...+231
=> 2A-A = 231-20
=> A = 231 - 1 = B
c) A = 20 +21+22+...+2100
=>2A = 21+22+23+...+2101
=> 2A-A = 2101-20
A = 2101 - 1
=> A + 1 = 2101
mà A+ 1 = 2x
=> x = 101
so sanh a va b co bang nhau ko
a = 1^2 + 5^2 +6^2 b = 2^2 +3^2 +7^2
a= 10^2 +11^2 +12^2 b= 13^2 +14^2
a= 17 x (3+ 7 ) va b= 3^3 +7^3
a=4 x (4+8 ) va b= 4^3 +8^3