chứng ttor rằng tích n(n+1)(n+5) chia hết cho 3 với mọi n thuộc N
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2.
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.
chứng minh rằng : A=n(n2+1)(n2+4) chia hết cho 5 với mọi n thuộc số tự nhiên
chứng minh rằng với mọi n thuộc Z : n2 - n chia hết cho 2
\(n^2\)- n = nn - n.1 = n . ( n - 1)
Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn
\(\Rightarrow\) n chia hết cho 2 hoặc (n-1) chia hêt cho 2
\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích nx(n+5) chia hết cho 2.
TA CÓ
+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh
+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6
mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2
suy ra n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 (đpcm)
Nếu n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
nếu n lẻ thì n+5chawnx=>đpcm
n chẵn=>đpcm
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2.
Ai nhank mk tick
n(n + 5) = n2 + 5n
+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn. ⇒ n2 + 5n ⋮ 2
+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn. ⇒ n2 + 5n ⋮ 2
⇒ ĐPCM
Chứng minh rằng với mọi n thuộc N* thì tích của (n+1).(3n+2) là một số chẵn.
Chứng tỏ:
105 +5 chia hết cho 3 và 5
1050+44 chia hết cho 2 và 9
N x(n+1)x(n+5) chia hết cho 3 với mọi n thuộc N
a)Vì 105 chia hết cho 5 và 5 chia hết cho 5 nên 105 + 5 chia hết cho 5.
Ta có: 5 chia 3 dư 2, 105 chia 3 dư 1 ( vì có tổng các chữ số là 1 ) nên 105 + 5 chia hết cho 3.
b) Vì 1050 chia hết cho 2 và 44 chia hết cho 2 nên 1050 + 44 chia hết cho 2.
Vì 44 chia 9 dư 8 và 1050 chia 9 dư 1 ( vì có tổng các chữ số bằng 1 ) nên 1050+44 chia hết cho 9.
c) n x ( n + 1 ) x ( n + 5 ).
Nếu n chia hết cho 3 thì tích trên chia hết cho 3.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => tích trên chia hết cho 3.
Nếu n chia 3 dư 1 thì n + 5 chia hết cho 3=> tích trên chia hết cho 3.
Vậy ta có n x ( n + 1 ) x ( n + 5 ) luôn chia hết cho 3 với mọi n thuộc N.
105+5=100005
số trên có tận cùng là 5 nên chia hết cho 5
có tổng các chữ số là 6 nên chia hết cho 3
còn lại chịu tui học dốt lắm!!!
Chứng minh rằng n3 + 2n chia hết cho 3 với mọi n ∈ N*
Với n=1 thì 1^3+2*1=3 chia hết cho 3
Với n>1 thì Giả sử n^3+2n chia hết cho 3
Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3
\(A=\left(n+1\right)^3+2\left(n+1\right)\)
\(=n^3+3n^2+3n+1+2n+2\)
=n^3+3n^2+5n+3
=n^3+2n+3n^2+3n+3n+3
=n^3+2n+3(n^2+n+n+1) chia hết cho 3
=>ĐPCM