Những câu hỏi liên quan
LN
Xem chi tiết
VT
14 tháng 6 2016 lúc 11:00
Em mới học lớp 7
Bình luận (0)
E2
14 tháng 6 2016 lúc 12:01

222332322>0

Bình luận (0)
MN
14 tháng 6 2016 lúc 15:04

đáp số : ??? 

Bình luận (0)
NA
Xem chi tiết
HM
Xem chi tiết
H24
14 tháng 1 2017 lúc 22:26

\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)

(*) và (1)\(\Rightarrow P=1\)

Bình luận (0)
NL
Xem chi tiết
PT
Xem chi tiết
HD
Xem chi tiết
NL
4 tháng 3 2022 lúc 22:35

Đặt vế trái BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2011}\)

Đồng thời: \(\left\{{}\begin{matrix}y^2+z^2-x^2=2a^2\\z^2+x^2-y^2=2b^2\\x^2+y^2-z^2=2c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\right)\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{\left(y+z+z+x+x+y\right)^2}{2x+2y+2z}-\left(x+y+z\right)\right)=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\sqrt{\dfrac{2011}{2}}\)

Bình luận (0)
L1
Xem chi tiết
TA
Xem chi tiết
PD
Xem chi tiết