Cho G là trọng tâm của tam giác đều ABC. CMR: GA=GB=GC.
Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng:
GA = GB = GC
Gọi trung điểm BC, CA, AB lần lượt là M, N, P.
Khi đó AM, BN, CP đồng quy tại trọng tâm G.
Ta có: ∆ABC đều suy ra:
+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).
+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).
⇒ AM = BN = CP (1)
Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:
Từ (1) , (2) ⇒ GA = GB = GC.
cho g là trọng tâm của tam giác abc abc là tam giác đều
cm ga =gb=gc
GA=GB=GC, G là trọng tâm tam giác kkhi và chỉ khi đso là tam giác đều.
Đề sai
cho g là trọng tâm của tam giác đều abc chứng minh rằng gb=gc =ga
cho G là trọng tâm tam giác đều ABC c/minh GA=GB=GC
Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng : GA = GB = GC
vì G là trọng tâm của tam giác ABC ta có :
AG=2/3 AN
BG=2/3 BQ (1)
CG=2/3 CM (2)
mà 2 tam giác ACM=ABQ ( g-c-g)
suy ra CM=BQ (cạnh tương ứng) (3)
từ (2) và (3) suy ra BG=CG
>>>>>>.........''tớ chỉ pk lmf tới đây thui''.........<<<<<<<<<<
cho minh xin vai ******* nha minh can gap lam
típ theo là :...........
mà AN,CM,BQ là 3 đường trung tuyến của tam giác đều nên :
suy ra : AN=CM=BQ
suy ra: AG=BG=CG
........ko pk đúng sai âu nha..........
Cho G là trọng tâm của tam giác đều ABC . Chứng minh rằng:
GA=GB=GC
làm sao để c/m 3 cạnh đó bằng nhau??????????? mk cx ko bít bn giống mk hihi
4536476598769
cho G là trọng tâm của tam giác đều ABC cm rằng
GA=GB=GC
Cho tam giác đều ABC cạnh a, đường cao AH, trọng tâm G. Tính:
a, |AC|, |AB + AH|, |AB - AH|
b, |GB|, |GA + GB|, |GA + GB + GC|
Gọi vecto GA + GB+GC =veto 0. CMR G là trọng tâm tam giác ABC
* cái này là công thức rồi bn o cần chứng minh đâu
công thức : cho tam giác ABC ; nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Gọi M trung điểm BC
G đối xứng D qua M
=> tứ giác BGCD là hình bình hành
=> GD=2.GM (Hình bình hành có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
Mà AG = 2.GM ( \(\dfrac{AG}{GM}=\dfrac{2}{1},GA=\dfrac{2}{3}AM\) )
⇒ AG=GD
Mặt khác, G ϵ AD
⇒\(\overrightarrow{AG}=\overrightarrow{GD}\)
Ta có \(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\) (Quy tắc hình bình hành)
Nên \(\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}\) = \(\overrightarrow{GD}+\overrightarrow{GA}\)
Mà \(\overrightarrow{AG}=\overrightarrow{GD}\) (cmt)
⇒\(\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{AG}-\overrightarrow{AG}=\overrightarrow{O}\)
Tam giác ABC đều cạnh là 8cm. G là trọng tâm của tam giác ABC, trung tuyến AD, BE, CF.
a/ Tính AD, CG
b/ Chứng minh GA = GB + GC
a: AD=BE=CF=8*căn 3/2=4*căn 3(cm)
CG=2/3*4*căn 3=8/3*căn 3(cm)
b: Vì ΔABC đều có G là trọng tâm
nên G là tâm đường tròn ngoại tiếp
=>GA=GB=GC