Tìm số nguyên n để các phân số sau có giá trị là số nguyên lớn nhất.
B=\(\dfrac{6n+5}{2n-1}\)
Tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính các giá trị đó.
a) B=3n/1n+1 b) 6n+5/2n−1
lưu ý : / phần nha
a)B=3(n+1)/n+1 - 3/n+1
=3 - 3/n+1
để B nguyên thì n+1 thuộc ước của 3 (1;3)
suy ra n =(0;2)
câu b tương tự
a) \(B=\dfrac{3n}{n+1}=\dfrac{3\left(n+1\right)}{n+1}-\dfrac{3}{n+1}=3-\dfrac{3}{n+1}\in Z\)
\(\Rightarrow\dfrac{3}{n+1}\in Z\Rightarrow n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\Rightarrow n\in\left\{0;-2;2;-4\right\}\)
b) \(\dfrac{6n+5}{2n-1}=\dfrac{3\left(2n-1\right)}{2n-1}+\dfrac{8}{2n-1}=3+\dfrac{8}{2n-1}\in Z\)
\(\Rightarrow\dfrac{8}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Vì \(n\in Z\Rightarrow n\in\left\{1;0\right\}\)
Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó N=6n+5/2n-1
\(N=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=3+\frac{8}{2n-1}\inℤ\Leftrightarrow\frac{8}{2n-1}\inℤ\)
mà \(n\)là số nguyên nên \(2n-1\inƯ\left(8\right)\)mà \(2n-1\)là số lẻ nên
\(2n-1\in\left\{-1,1\right\}\Leftrightarrow n\in\left\{0,1\right\}\).
tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó.
A= 3n+9/n-4
B= 6n+5/2n-1
A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25}
tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó.
A= 3n+9/n-4
B= 6n+5/2n-1
tìm số nguyên n để phân số sau có giá trị là số nguyên và tính giá trị đó:
A=6n+5/2n-1
Tìm các số nguyên n để phân số sau có giá trị là một số nguyên và tính các giá trị đó.
a) A =n+1/n+4
b) B =3n−1/n+1
c) C =6n+5/2n−1
cứu mik vớiiiiiiiiii
a. ĐK : \(n\ne-4\)
\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)
\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n + 4 | 1 | -1 | 3 | -3 |
n | -3 | -5 | -1 | -7 |
b, ĐK : \(n\ne-1\)
\(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
c,ĐK : \(n\ne\frac{1}{2}\)
\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2(loại) | -1/2(loại) | 5/2(loại) | -3/2(loại) | 9/2(loại) | -7/2(loại) |
Tìm số nguyên n sao cho phân số sau có giá trị là một số nguyên và tính giá trị đó: 6n+5/2n-1
Tìm số nguyên x để phân số sau có giá trị là số nguyên và tính giá trị đó:
a,3n+9/n-4
b,6n+5/2n-1
tìm các số nguyên N để các phân số sau có giá trị là số nguyên và tính giá trị đó :
A = \(\frac{3n-9}{n-4}\)
B = \(\frac{6n+5}{2n-1}\)
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
câu đầu là 3 chia hết cho n-4=>n-4 E Ư(3) nhé
tìm các số nguyên N để các phân số sau có giá trị là số nguyên và tính giá trị đó :
A = \(\frac{3n+9}{n-4}\)
B = \(\frac{6n+5}{2n-1}\)
a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)
\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)
\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)
b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)
\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow n\in\left\{1;0\right\}\) Vì \(n\in Z\)
Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21
\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)
\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Ta có bảng sau:
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Vậy......
b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8
\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 1.5 (loại) | -0.5 (loại) | 2.5 (loại) | -1.5 (loại) | 4.5 (loại) | -3.5 (loại) |
Vậy \(x\in\left\{0;1\right\}\)